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Figure 1: A 1Gtriangles colored model of Michelangelo’s David interactively inspected on a iPhone 4 and on “the new iPad”. The iPhone
has a 1Ghz Apple A4 processor with 512 MB RAM, a PowerVR SGX535 GPU and a screen resolution of 640x960 pixels, while the iPad has
a 1Ghz Dual-core Apple A5X processor with 1GB RAM, a PowerVR SGX543MP4 GPU and a screen resolution of 2048 x 1536 pixels.

Abstract

We present a software architecture for distributing and rendering
gigantic 3D triangle meshes on common handheld devices. Our
approach copes with strong bandwidth and hardware capabilities
limitations in terms with a compression-domain adaptive multires-
olution rendering approach. The method uses a regular conformal
hierarchy of tetrahedra to spatially partition the input 3D model and
to arrange mesh fragments at different resolution. We create com-
pact GPU-friendly representations of these fragments by construct-
ing cache-coherent strips that index locally quantized vertex data,
exploiting the bounding tetrahedron for creating local barycentic
parametrization of the geometry. For the first time, this approach
supports local quantization in a fully adaptive seamless 3D mesh
structure. For web distribution, further compression is obtained by
exploiting local data coherence for entropy coding. At run-time,
mobile viewer applications adaptively refine a local multiresolu-
tion model maintained in a GPU by asynchronously loading from
a web server the required fragments. CPU and GPU cooperate for
decompression, and a shaded rendering of colored meshes is per-
formed at interactive speed directly from an intermediate compact
representation using only 8bytes/vertex, therefore coping with both
memory and bandwidth limitations. The quality and performance
of the approach is demonstrated with the interactive exploration of
gigatriangle-sized models on common mobile platforms.
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1 Introduction

We are currently immersed in an information society in which ev-
eryone is continuously connected to a vast information landscape
through mobile devices and pervasive high-speed Internet. In many
domains, such as cultural heritage, detailed high density 3D models
are an important ingredient of the information flow that needs to be
made available to the public.

Despite the impressive continuous improvements of mobile hard-
ware, however, mobile 3D graphics is still constrained, compared
to the desktop counterparts, by limited resources of low comput-
ing powers, low memory bandwidths, small amounts of memory,
and limited power supply. Streaming and rendering extremely de-
tailed 3D models, such as the ones created by 3D scanning and re-
quired for cultural heritage applications, thus requires particularly
well crafted algorithms and data structures.

In this paper, we present a software architecture capable of dis-
tributing and rendering gigantic dense 3D triangle meshes on com-
mon handheld devices. Our approach copes with the strong plat-
form limitations using a compression-domain adaptive multireso-
lution rendering approach.

The method builds on Adaptive TetraPuzzles (ATP) [Cignoni et al.
2004] by using a regular conformal hierarchy of tetrahedra to spa-
tially partition the input 3D model and to arrange mesh fragments at
different resolution in an implicit diamond. In this work, however,
tetrahedra not only partition but also clip the original triangulation.
We can thus create compact GPU-friendly representations of each
fragment by constructing cache-coherent strips that index compact
interleaved quantized vertex data, exploiting the bounding tetrahe-
dron for creating local barycentric parametrization of the geometry.
Appropriate boundary constraints are introduced in the splitting,
simplification, and quantization steps to ensure that all conform-
ing selective subdivisions of the hierarchy of tetrahedra lead to cor-
rectly matching surface fragments. For the first time, this approach
supports local quantization in a fully adaptive seamless 3D mesh
structure. For web distribution, further compression is obtained on
top of the compact GPU-friendly representation by exploiting local
data coherence using a low-complexity coding approach based on a
wavelet transformation followed by entropy coding of coefficients.

At run-time, mobile viewer applications adaptively refine a local
multiresolution model by managing a local GPU cache and asyn-



chronously loading on-demand from a web server the required frag-
ments. CPU and GPU cooperate for decompression, and a shaded
rendering of colored meshes is performed at interactive speed di-
rectly from an intermediate compact representation that uses only
8bytes/vertex, therefore coping with both memory and bandwidth
limitations. Keeping data compact is of particular importance with
current mobile devices, with extremely large screen resolutions,
which dictate large rendering working sets, but limited main mem-
ory sizes. For instance, the current iPad generation sports a 3Mpixel
display, but has a RAM capacity of only 1GB. Moreover, by de-
coding compressed data on-the-fly on graphics hardware, we can
not only reduce local memory consumption, but also power con-
sumption, thanks to reduced memory access and data transmission
through the system bus.

As highlighted in the short overview of related work (Sec. 2), while
certain other approaches share some of our method’s properties,
they typically do not meet the capability to rapidly generate adap-
tive seamless meshes by rendering from a very compact represen-
tation on a mobile platform.

The efficiency of the approach has been successfully evaluated with
a number of large models, including a massive 1G triangle colored
model of Michelangelo’s David (Sec. 7).

2 Related Work

Building an efficient system for the exploration of massive 3D
meshes on mobile devices requires the improvement and combina-
tion of state-of-the-art results in a number of technological areas. In
the following, we briefly discuss only the approaches most closely
related to ours. Readers may refer to established surveys on mas-
sive model rendering [Gobbetti et al. 2008], compression [Alliez
and Gotsman 2003; Peng et al. 2005], and mobile graphics [Capin
et al. 2008] for further details.

Adaptive 3D model rendering on mobile devices. While many
examples exist for rendering light 3D models on portable plat-
forms (e.g., MeshPad [ISTI-CNR Visual Computing Lab 2012] for
meshes or PCL [Marion 2012] for points), exploring massive mod-
els on mobile devices is still a hot research topic. Much of the work
in model distribution has focused so far on compression of mesh
structures rather than adaptive view-dependent streaming. MPEG-
4 is a reference work in the field [Jovanova et al. 2008]. Classic
methods for view-dependent LOD and progressive streaming of ar-
bitrary meshes were built on top of fine-grained updates based on
edge collapses or vertex clustering [Xia and Varshney 1996; Hoppe
1997; Luebke and Erikson 1997]. Many compression and stream-
ing formats for the web have been built upon them [Maglo et al.
2010; Blume et al. 2011; Niebling et al. 2010]. These methods,
however, are CPU-bound and spend a great deal of rendering time
computing a view-dependent triangulation prior to rendering, mak-
ing their implementation in a mobile setting particularly challeng-
ing. With the increasing raw power of GPUs, the currently higher-
performance methods typically reduce the per-primitive workload
by pre-assembling optimized surface patches [Cignoni et al. 2004;
Yoon et al. 2004; Cignoni et al. 2005; Borgeat et al. 2005; Gob-
betti and Marton 2004a; Gobbetti and Marton 2004b; Goswami
et al. 2013], although this kind of approaches has been demon-
strated to work on mobile devices only in the context of point-
based rendering [Balsa Rodriguez et al. 2012]. Recently, Gobbetti
et al. [2012] have proposed an efficient image-based mesh repre-
sentation that, however, only works for models for which an iso-
metric quad parametrization exists. We propose, instead, a gen-
eral multiresolution structure based upon tetrahedral space parti-
tioning specifically tailored for mobile devices. The method is
based on ATP [Cignoni et al. 2004], and improves over it by in-

troducing a compressed GPU-friendly representation that ensures
crack-free surfaces while using local quantization. To our knowl-
edge our method is the first one fully supporting local quantization
in a general adaptive 3D mesh structure.

Streaming and rendering using compact representations. Com-
pressed graphics data potentially enable mobile application to better
utilize the limited storage space and bandwidth at all levels of the
pipeline. Many mesh compression algorithms offer good perfor-
mance in compression ratio for both topology and vertex attributes.
MPEG-4 [Jovanova et al. 2009] is a reference work in the field,
and includes 3D mesh coding (3DMC) algorithms based on topo-
logical surgery algorithm [Taubin and Rossignac 1998] and pro-
gressive forest split [Taubin et al. 1998]. State-of-the-art topol-
ogy coders [Rossignac 2001] are capable to achieve the theoret-
ical minimum of 1.62 bpt (bits/triangle), approximately 3.24 bpv
(bits/vertex). The decoding processes are however rather compli-
cated and do not construct structures suitable for fast direct render-
ing. We focus, instead, in computing a representation for geome-
try that reduces the bandwidth required to transmit it to the graph-
ics subsystem. This is achieved by constructing, for each mesh
fragment, compressed primitive-topology representations that en-
sure high vertex coherence, as well as reducing vertex data size.
For topology, Chhugani et al. [2007] presented an algorithm tai-
lored for hardware decompression with 8 bpt (16bpv) by maintain-
ing a cache coherent triangle sequence, and Meyer et al. [2012]
proposed a coding technique reaching 5 bpt (10 bpv), which, how-
ever, requires CUDA for decompression. Similarly to Chhugani
et al. [2007], we sort topology and vertex data after computing
a cache-coherent rendering sequence, using, however, a gener-
alized strip optimized for the post-transform vertex cache rather
than a triangle list. Hardware-compatible vertex data compres-
sion is typically achieved in this context by attribute quantization.
Since global position quantization [Calver 2002; Purnomo et al.
2005; Lee et al. 2009] provides poor rate-distortion performance
for large meshes, recent efforts have concentrated on local quanti-
zation techniques [Lee et al. 2010], which, however, lead to cracks
for multiresolution meshes. In our work, we improve over these lo-
cal quantization approaches by expressing positions of mesh frag-
ment vertices in the barycentric coordinate system relative to the
containing tetrahedron. Hardware-friendly normal compression is
achieved through an octahedral parametrization of normals [Meyer
et al. 2010]. For network transmission, as for most compression
schemes, we exploit high correlation between adjacent vertices by
using predictive and entropy coding of prediction residuals. Rather
than using the typical linear prediction schemes [Peng et al. 2005],
we use a non-linear approach based on wavelet lifting [Senecal et al.
2004], and apply it to both topology and vertex data.

3 Pipeline overview

Starting from a high-resolution triangle mesh, we build, using a
parallel out-of-core process, a hierarchical multiresolution struc-
ture based upon a conformal tetrahedra partitioning of the model’s
bounding box, similarly to what is proposed by the ATP ap-
proach [Cignoni et al. 2004].

The leaves of the multiresolution structure contain the full resolu-
tion original model while inner nodes contain simplified represen-
tations of the geometry with appproximatively half of the number
of triangles contained into the children. The building process is
performed off-line by iteratively inserting triangles from the input
mesh into the hierarchical structure, which is recursively refined in
order to maintain a maximum triangle count in the leaves. Then,
coarser representations are built bottom-up by recursively merging
children nodes, with a maximum triangle count and a representation
error threshold as constraints.







methods typically applied to vertex positions. The low-pass co-
efficients produced by the wavelet transformation are iteratively
filtered by the same wavelet until we remain with a single (root)
approximation coefficient. The resulting approximation and detail
coefficients are then transformed with a range codec: integers are
arithmetically coded using a single symbol for the value 0, while
other values are encoded using exponent, mantissa and sign, with
different context for each encoded bit. This is a variation of the
symbol encoding method used in the FFV1 Video Codec [Martin
1979]. During decompression all the steps are undone in reverse
order.

In the course of the building process we also maintain a temporary
version of the simplified data stored uncompressed on an external
memory data repository, which is used to build coarser level sim-
plifications without accumulating quantization errors.

4.5 Parallel processing

Simplification and encoding can be easily parallelized, being each
diamond independent from the others. After the recursive subdi-
vision, the simplification starts from the leaves and goes up to the
root. A master process takes care of assembling each diamond of
the current level, fetching corresponding tetrahedra geometry from
the uncompressed data repository, and assigning it to a worker pro-
cess. On the worker process, inner node diamonds get their ge-
ometry simplified, encoded and compressed. For leaf nodes, only
encoding and compression are performed. After this job the worker
sends the compressed diamond geometry back to the master node.
After all diamonds of the current level are processed, the master
starts to process the next coarser level and, level by level, the dataset
is simplified up to the root. At that point, since children nodes are
no more needed, their uncompressed representations can be dis-
carded.

5 Server

On the server side, data for each model is stored in separated
databases. In the pursuit of scalability, the server acts as a repos-
itory of data with zero processing overhead. An abstraction layer
handles communication processes through different transport pro-
tocols, such as HTTP or direct connection through TCP. A simple
module for Apache2 is in charge of handling HTTP requests, which
relies upon a local database to efficiently locate the requested data.
Berkeley DB is used for storage, accessing and caching data in the
server side due to its open source license and its matureness as em-
beddable database. Berkeley DB provides an efficient and scalable
transactional database engine with high reliability and availability,
able to handle up to terabytes of data. It also allows configuration
of per-process replicated cache and shared index memory among
different database instances. Altogether, provides an scalable ar-
chitecture with reduced memory load for servers when dealing with
hundreds of clients in parallel. On the other side, Apache2 is a ma-
ture and open source server which provides an efficient, secure and
extensible architecture for developing HTTP services. Its scablable
and multithreaded architecture together with features like persis-
tent server processes and load balancing are essential to the perfor-
mance of our application. A custom Apache module implements
a connectionless protocol based on HTTP which receives queries
composed of database name and node identifier. This module ex-
tracts the query parameters, retrieves the corresponding data from
the DB, and sends back either node’s data or an empty message if
it is not present. This architecture relies on mature components that
have been widely tested and provide good scalability and perfor-
mance when dealing with thousands of clients.

6 Client architecture description

Embedded devices such as Apple iPhone/iPad or Android devices
in general, offer support for OpenGL ES, the specification for em-
bedded devices. There are now two available versions exposed on
those platforms: 1.1 and 2.0. OpenGL speficications for Embed-
ded Devices have been defined to be a fully functional subset of its
desktop counterparts where only the more general functionality has
been included in order to minimize circuitry complexity and energy
consumption.

The ES 1.1 version offers a lighter version of OpenGL 1.5, where
inmediate mode has been supressed together with complex primi-
tives such as quads or polygons. The functionalities include Vertex
Buffer Objects (VBO) and Vertex Arrays to feed the GPU with ge-
ometric primitives In the ES 2.0 version, based upon the 2.0 desk-
top specification, the whole fixed pipeline functionality has been
removed in favor of the shader based pipeline, where Vertex and
Fragment shaders must be provided giving more flexibility. The
GLSL speficication for ES has also been modified adding control
for data precision.

Embedded GPUs typically focus on high efficiency and low power
consumption, although nowadays they are able to offer decent com-
putational power in comparison with desktop GPUs. The Snap-
Dragon 2XX GPU integrated in Qualcomm processors, among
other GPUs used in current mobile devices, use Tile Based Ren-
dering (TBR). Only once all the primitives have been submitted
the driver splits the geometry into tiles which are then rendered us-
ing a small amount of in-core memory. The PowerVR SGX5XX,
used in the various iPhone/iPad series and some high-class Android
devices, go a bit further and use Tile Based Deferred Rendering
(TBDR), which delays fragment operations until occlusion tests
have been processed avoiding expensive calculations for occluded
fragments. This architecture, widely used in embedded GPUs, pen-
alyzes reading back from the frame buffer since it requires waiting
for all the tiles to be written prior to reading. In general, current
generation of embedded GPUs provide really good performance
together with an efficient energy consumption; although the con-
tinuously increasing display resolution makes the fragment load to
penalyze heavily the rendering performance (i.e, iPad 3 resolution
of 2,048 by 1,536 uses a PowerVR SGX543MP4 with 16 unified
shader units to render this massive amount of fragments).

Taking into account these architecture constraints, the rendering
engine has been designed to minimize fragment processing while
feeding the GPU with large geometry batches using cache opti-
mized indexed triangle strips.

6.1 Adaptive view-dependent representation

Each frame, depending on the viewing parameters and a given fixed
screen space tolerance, the client performs an adaptive rendering of
the multiresolution model. For this purpose, the client relies on a
hierarchical multiresolution representation of the model that is in-
crementally refined depending on the navigation. Initially starting
with a coarse representation of the whole model, the hierarchy is
traversed for each render view point in order to determine the avail-
able working set. The traversal algorithm takes into account diverse
parameters: the viewing position, the available GPU resources, the
current CPU usage level, and the required network bandwith. Dif-
ferently from ATP [Cignoni et al. 2004] the refinement is performed
on a diamond basis. The viewer maintains the multiresolution struc-
ture as a map of diamonds, each of them identified by its center
integer coordinates. For each diamond, on creation, there are avail-
able through a small lookup table its parents, children and tetrahe-
dra indices. Each of the tetrahedra indices corresponds to an entry



in the cache containing the compact representation of the fragment
geometry. To each diamond we associate a view dependent pri-
ority which is the projected average edge length if the diamond is
visible, or zero otherwise. A diamond is refined if its priority is
higher than a user selected pixel tolerance. Refinement of a dia-
mond stops if it is not visible, if it should be refined but children
data is still not available, or if it fulfills the viewing constraints. Di-
amond based refinement is capable of producing a conformal tetra-
hedral mesh when each diamond is split only if its parent diamonds
are already present in the graph. Such a refinement has the valuable
benefit of being interruptible, hence we can use memory, triangle
and time budgets to limit the used resources and to avoid locks,
thus permitting interactive performance. We update the multireso-
lution structure cut using two diamond heaps: the refinement one,
which is sorted with decreasing priority, and contains the leaves of
the cut, and the coarsening heap which contains the parents of the
leaves, with increasing priority. At each frame, instead of travers-
ing all the hierarchy from the root, we update the priority of each
diamond on the two heaps, then we refine the top of the refinement
heap until achieving the desired error threshold, or one of the bud-
get constraints is reached. Once over a new frame we also coarsen
the top of the coarsening heap to release resources. The two heaps
are properly updated for each refinement and coarsening operation.

In RAM memory, we maintain the cache of tetrahedra compact ge-
ometries, which are indexed through the diamond graph. The cache
implements a LRU policy that maximizes the reuse of nodes while
enforcing a resource usage below a given limit. The compact format
permits to directly map data as Vertex Buffer Objects, which are
ready to be sent to the GPU. This compact representation also per-
mits to perform raycasting without needing a decompression step.
Raycasting is used to identify the touch point over the model for
interaction purposes. Each tetrahedron also contains a small hierar-
chical tree of bounding boxes, computed just after loading, which is
used to improve raycasting performance. LRU fragments are kept
in the cache as long as they are referenced by the diamond graph.
After a coarsening operation, when a fragment is no more refer-
enced, it goes toward the end of the LRU and is discarded as soon
as new resources are needed.

6.2 Multi-threaded data access layer

The retrieval of data is performed through an asynchronous data
access layer which encapsulates the data fetching mechanism and
avoids blocking the application when the requested data is not yet
available. The main thread, in charge of performing the hierarchy
traversal for determining the working set, asks the cache for the
nodes required for the current view position. If the requested data
is available, the node is returned and so the traversal continues until
the best available representation is reached; otherwise, a new re-
quest for this node is enqueued and the traversal stops since this is
the best available representation. Another thread is responsible of
fetching the requested data, contained in a priority queue. Depend-
ing on an available bandwith estimation, a given number of requests
is sent to the server, while the remaining requests are ignored. Since
request priority corresponds to the node’s projected error, coarser
nodes are always requested first. On each frame, the request queue
is cleared and filled again with the nodes needed for that frame,
and so will be served at some point only after coarser nodes are
available. This thread also handles incoming data and performs the
decompression from the entropy coded version to the compact GPU
representation, proceeding with the reverse sequence described in
the preprocessing phase. Entropy decoding, then per component
backward wavelet transform, and finally conversion from YCoCg
to RGB. After this decompression, data is stored in an interleaved
array of 8 bytes per vertex with 3 bytes for barycentric coordinates,
2 bytes for the octahedron normals, and 3 bytes for the RGB color.

Figure 6: Detail of David’s eye interactively rendered on a iPad.
This 1Gtriangles moddel is colored using post-restoration color
data. Note how our compression preserves extremely high quality
details in shape, normal, and colors.

6.3 Rendering process

Before rendering a simple shader is activated. The visible tetrahe-
dra of the current cut are traversed by a visitor which takes care of
managing a cache on GPU of Vertex Buffer Objects (VBO). The
size of the GPU cache is smaller than the size of the CPU one,
thus more memory remains for CPU data, limiting the need of re-
questing and decoding multiple times data that exited from the lim-
ited GPU resources. When a node is visited, if it is not present in
the cache, a corresponding VBO is created and inserted into GPU
cache and rendered, otherwise only rendering is performed. Ren-
dering consists in binding the buffer, setting up the vertex attribute
pointers and drawing the optimized stitched strip sequence present
in the geometry indices. For alignment purposes, we address ver-
tex attributes as two 4-bytes words, and let the shader separate the
position, normal, and color components.

The shader must transform data expressed in local barycentric co-
ordinates. The transformation is given by this simple equation
v = ||c0c1c2c3|| · |vb|, where ci represent the corner ith while
vb is the vector of the 4 barycentric coordinates. Thus the 4 cor-
ners can be replaced by a matrix, which is post-multiplied to the
model view matrix. Therefore, rendering from barycentric coor-
dinates is not causing extra per-vertex cost with respect to using
Cartesian coordinates. Since color is already in the RGB24 for-
mat, the only extra work that nees to be performed is the decod-
ing of normals from the two quantized octahedral map coordinates.
From the quantized coordinates remapped into [−1, 1] we compute
nz = 1.0−|u|−|v| . Then if nz > 0 we are on the upper side of the
octahedron and nxy = uv, otherwise we are on the lower part and
we need to revert the nxy components according to these equations:
nx = (1−ny) · sign(u) and ny = (1−nx) · sign(v), see [Meyer
et al. 2010] for further details. Attribute decoding cost is thus negli-
gible with respect to the other work performed by the shader (in par-
ticular, transformation, projection, and shading). Fig. 6 illustrates
the quality of rendering that can be achieved using compressed data.

6.4 Graphical User Interface

On the iOS platform, we’ve taken advantage of the Cocoa Touch
UI framework to design a simple Graphical User Interface (GUI)



composed of a Model List Widget and OpenGL Rendering Layer.
End users can easily browse and select the desired model through
the Model List Widget and interact with the OpenGL Rendering
Layer through standard multi-touch gestures. It’s possible to rotate
the model about its bounding box by moving a single finger on the
screen, move the model with two fingers or zoom it in and out by
performing a pinch gesture.

Interaction is also possible through an alternative “target-based” ap-
proach, with which a single quick tap by the user selects a target
point which is attached to the model. This target point, rendered
on screen as a small colored sphere, allows the user to easily ro-
tate the model about by moving a single finger on the screen. By
tapping the target again instead, it will trigger a smooth animation
that moves the camera from its current position toward the target’s
position. The target sphere can be deactivated anytime by tapping
outside of the model.

7 Results

Using this method, we developed a framework composed of a C++
preprocessor, a client iOS app, and a HTTP server. Several tests
were performed on pre-processing and rendering of very large mod-
els. Here we present results relative to two 3D large models from
the Digital Michelangelo Repository of Stanford University with
0.25mm resolution: the David statue with 940 M triangles, and the
St. Matthew statue with 374 M triangles. The David model is en-
riched with the color signal acquired after restoration and blended
with geometry with the algorithm proposed by [Pintus et al. 2011],
while the St. Matthew has a precomputed ambient occlusion gray
scale per vertex.

7.1 Dataset Construction Performance

The preprocessor has been implemented using C++ and the Open-
MPI high performance message passing library. Each model
has been processed using a single off-the-shelf PC with Linux
3.0.6 (Gentoo distribution) and an Intel(R) Core(TM) i7 CPU 960
@ 3.20GHz with 24GB RAM. We constructed all multiresolu-
tion structures with a target maximum leaf size of 8000 trian-
gles/tetrahedron and a leaf quantization tolerance of 0.25mm.

Processing of the David statue took about 10h45m on 8 cores, while
about 4h15m for the St Matthew, which correspond to roughly 24k
triangles/second.

The data compression rate is 49.1 bits/vertex for the David model
and 45.1 bits/vertex for the St. Matthew model, including the mesh
topology information, see Table 1. The David’s color information
is heavier than St.Matthews, since the latter is only a low frequency
ambient occlusion component. Instead, normals of the St. Mattew
require more bits due to the roughness of the surface with respect to
the David. Color encoding is lossless, and normal error induced by
octahedron encoding is subdegree, and this represents the limit of
this method when using 8 bits per component. Our wavelet trans-
formation and entropy coding step produces a compression of about
2.3x for vertex data and 3.5x for mesh topology with respect to our
compact GPU friendly representation.

7.2 Rendering performance

The client was implemented on iOS 6 using C++, OpenGL and
Objective-C++/C++. We evaluated the rendering performance of
the technique on a number of inspection sequences on an iPhone 4
and on a 3rd generation iPad. The iPhone has a 1Ghz Apple A4 pro-
cessor with 512 MB RAM, a PowerVR SGX535 GPU and a screen
resolution of 640 x 960 pixels, while the iPad has a 1Ghz Dual-core

David bpv St Matthew bpv

Position 10.9 10.9
Color 9.1 3.8

Normal 8.6 9.7
Mesh Topology 20.5 20.7

Total 49.1 45.1

Table 1: Bit rates. Bits per vertex subdivided per position, color,
normal and mesh topology for the two processed models.

Apple A5X processor with 1GB RAM, a PowerVR SGX543MP4
GPU and a screen resolution of 2048 x 1536 pixels. The two de-
vices were chosen as representative extreme cases. The iPad has
the currently largest screen, while the iPhone is an “old generation”
phone with average specs. It must be considered that the current
generation of mobile devices, such as the Apple iPhone 5, Samsung
Galaxy S3 and Note 2, have technical specifications similar or even
higher than the iPad 3’s, with a sensibly smaller screen resolution.
We can thus expect much better results on these newer generation
devices.

The quantitative results presented here in details were collected dur-
ing interactive inspections with pixel tolerance 3 of the David and
St. Matthew models. The sessions were designed to be representa-
tive of typical mesh inspection tasks and to heavily stress the sys-
tem, and includes rotations and rapid changes from overall views
to extreme close-ups. The qualitative performance of our adaptive
renderer is also illustrated in an accompanying video, that shows
live recordings of the analyzed sequences. Representative frames
are shown in Fig. 7.

On the 3rd generation iPad we are able to render models with an
average throughput of 30 Mtriangles/second, with an average ren-
dering frame-rate of 37 fps, which eventually drops to 15 for full
refined views, when the number of triangles reaches the 2 Mtri-
angles maximum triangle budget. As expected, the iPhone 4 got
slightly worse results in terms of interactivity, with a throughput of
2.8 Mtriangles/second, with an average frame-rate of 10 fps, and
a worst case of 2.8 fps for views with maximum of 1 M Triangle
budget. As demonstrated in the video, performance is perfectly ade-
quate for interactive inspection tasks. The quality of representation
is extremely high. An example is presented in Fig. 6.

7.3 Streaming performance

The latency time needed to fully refine the data at the application
start-up and to refine the model during the exploration, is proba-
bly one of the most critical issues that a mobile device need to deal
with. Of course, this time is independent from the rendering thread
but only depends on the network bandwidth. The multiresolution
structure along with the output-sensitive technique adopted, allow
the client to only need a working set which depends on the screen
resolution. Hence, the latency time to download the current work-
ing set is proportional to the maximum resolution of the mobile
device. We have measured performance with a wireless connection
of a Linksys WAP 200 802.11 b/g access point 54 Mbps, as well as
with UMTS/HSPA connections. The wireless network was shared
among many clients, and we measured its peak performance to be
17 Mbps.

With the iPad, at start-up we need to load about 14.5MB to see the
whole David statue in full screen (1.1Mtri), and 19.9 MB to see
the St. Matthew (1.8Mtri). Our application performs data fetching
asynchronously in a separate thread to avoid delaying interactive
rendering. We measured data fetching speed to be of about 4.8Mbps
on the wireless network. We are thus able to use about 35% of



Figure 7: St. Matthew and David on a 3rd generation iPad and a iPhone 4. Representative frames from the accompanying video illustrating
the interactive remote exploration of the colored David (1Gtri) and St. Matthew (374Mtri) datasets. The average frame rate is 37fps on the
iPad and 10fps on the iPhone. Triangle throughputs vary from 30Mtri/s on iPad to 2.8Mtri/s on iPhone.

the available bandwidth. Full refinement takes about 30s for both
statues. Due to progressive refinement, after a couple of seconds,
however, the statues are already visible with a reasonable quality.
On the UMTS/HSPA, the data fetching speed was measured to be
about 3.3Mbps, for a full refinement latency of about 45s. The
iPhone4 is about 1.5x slower, which is mostly due to the lower CPU
performance, which leads to incresed decoding time.

8 Conclusions

We have presented an architecture capable of distributing and ren-
dering gigantic 3D triangle meshes on common handheld devices.
Our architecture exploits the properties of conformal hierarchies
of tetrahedra to produce a data structure which is adaptive, com-
pact, and GPU friendly. By combining CPU and GPU compression
technology with our multiresolution data representation, we are
able to incrementally transfer, locally store and render extremely
detailed models on hardware-constrained mobile devices with un-
precedented performance.

Besides improving the proof-of-concept implementation, we plan
to extend the presented approach in a number of ways. In particular,
we are currently incorporating occlusion culling techniques, useful
for datasets with a high depth complexity, and we plan to introduce
more sophisticated shading/shadowing techniques.

This enabling technology is intended to be a high performance
building block for mobile 3D graphics. A major application area of
massive model rendering is cultural heritage, where highly detailed
representations area required to reproduce the unique aura of real
objects. We also plan to better integrate this technology with web
infrastructurs by providing an implementation running in WebGL.
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MAGLO, A., LEE, H., LAVOUÉ, G., MOUTON, C., HUDELOT,
C., AND DUPONT, F. 2010. Remote scientific visualization of
progressive 3D meshes with X3D. In Proc. Web3D, 109–116.

MALVAR, H. S., SULLIVAN, G. J., AND SRINIVASAN, S. 2008.
Lifting-based reversible color transformations for image com-
pression. 707307–707307–10.

MARION, P., 2012. Point cloud streaming to mobile devices with
real-time visualization. www.pointclouds.org.

MARTIN, G. N. N. 1979. Range encoding: an algorithm for re-
moving redundancy from a digitised message. In Video and Data
Recording Conference.

MEYER, Q., SUESSMUTH, J., SUSSNER, G., STAMMINGER, M.,
AND GREINER, G. 2010. On floating-point normal vectors.
Computer Graphics Forum 29, 4, 1405–1409.

MEYER, Q., KEINERT, B., SUSSNER, G., AND STAMMINGER,
M. 2012. Data-parallel decompression of triangle mesh topol-
ogy. Computer Graphics Forum 31, 8 (Dec.), 2541–2553.

NIEBLING, F., KOPECKI, A., AND BECKER, M. 2010. Collab-
orative steering and post-processing of simulations on hpc re-
sources: Everyone, anytime, anywhere. In Proceedings of the
15th International Conference on Web 3D Technology, ACM,
101–108.

PENG, J., KIM, C.-S., AND JAY KUO, C. C. 2005. Technolo-
gies for 3D mesh compression: A survey. J. Vis. Comun. Image
Represent. 16, 6 (Dec.), 688–733.

PINTUS, R., GOBBETTI, E., AND CALLIERI, M. 2011. Fast low-
memory seamless photo blending on massive point clouds using
a streaming framework. ACM Journal on Computing and Cul-
tural Heritage 4, 2, Article 6.

PURNOMO, B., BILODEAU, J., COHEN, J. D., AND KUMAR, S.
2005. Hardware-compatible vertex compression using quan-
tization and simplification. In Proceedings of the ACM SIG-
GRAPH/EUROGRAPHICS conference on Graphics hardware,
ACM, 53–61.

ROSSIGNAC, J. 2001. 3D compression made simple: Edgebreaker
with Zip&Wrap on a corner-table. In Proceedings of the Inter-
national Conference on Shape Modeling & Applications, IEEE
Computer Society, Washington, DC, USA, SMI ’01, 278–.

SENECAL, J. G., LINDSTROM, P., DUCHAINEAU, M. A., AND

JOY, K. I. 2004. An improved N-bit to N-bit reversible Haar-like
transform. In 12th Pacific Conference on Computer Graphics
and Applications, 371–380.

TAUBIN, G., AND ROSSIGNAC, J. 1998. Geometric compression
through topological surgery. ACM Trans. Graph. 17, 2 (Apr.),
84–115.
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