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Abstract

The wide majority of current state-of-the-art compressed GPU volume renderers are based on block-transform
coding, which is susceptible to blocking artifacts, particularly at low bit-rates. In this paper we address the problem
for the first time, by introducing a specialized deferred filtering architecture working on block-compressed data
and including a novel deblocking algorithm. The architecture efficiently performs high quality shading of massive
datasets by closely coordinating visibility- and resolution-aware adaptive data loading with GPU-accelerated
per-frame data decompression, deblocking, and rendering. A thorough evaluation including quantitative and
qualitative measures demonstrates the performance of our approach on large static and dynamic datasets including
a massive 512* turbulence simulation (256GB), which is aggressively compressed to less than 2 GB, so as to fully
upload it on graphics board and to explore it in real-time during animation.

Categories and Subject Descriptors (according to ACM CCS): 1.3.3 [Computer Graphics]: Picture/Image Generation—
Computer Graphics [1.3.7]: Three-dimensional graphics and realism—Coding and Information Theory [E.4]: Data

compaction and compression—

1. Introduction

Volume compression tightly coupled with adaptive GPU-
based direct volume rendering has been shown to be an effec-
tive solution to explore large static and dynamic volumetric
datasets in local and distributed settings [BRGIG™ 14]. Adopt-
ing a compression-domain adaptive rendering approach, ca-
pable to maintain data in compressed format at all stages of
the rendering pipeline, while loading only the data required
for a particular view, makes it possible to minimize latency
and overcome hard GPU memory size limitations, especially
for massive, time-varying, or multi-volume visualization.

In such a compressed volume rendering architecture, de-
compression should ideally be transient and local, that is, a
fully reconstructed volume should never be produced, and
reconstruction should be performed in parallel for different
volume areas. Current methods achieve these goals through
independent coding of small volume blocks, using asymmet-
ric compression schemes designed to provide fast decoding
at run-time at the expense of increased (but high quality) en-
coding time [BRGIG™ 14]. Thanks to efficient parallel GPU
implementations, modern block-based compression-domain
GPU direct volume renderers are capable to achieve impres-
sive performance in terms of rendering quality and speed.
However, the independent decoding of volume blocks leads,
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especially at moderate and low bit rates, to visible discontinu-
ities between adjacent blocks. Such aggressive compression
are especially important for massive time-varying datasets,
s0 as to fit data on GPU in order to perform real-time visual-
ization during real-time simulation playback.

The term deblocking refers to approaches for improving
visual quality by smoothing the sharp edges which may ap-
pear between blocks when block coding techniques are used.
While in the literature there are many techniques presented
for deblocking images or videos, no method has been, so far,
applied to volume rendering. Deblocked volume rendering
significantly differs from image/video processing: data is pre-
sented through a complex rendering computation, rather than
just directly mapping it to the output; access to data blocks
is view-dependent and not performed in a fixed streaming
fashion; most methods use fixed-size encoding with variable
errors, rather than predetermined quantization thresholds in
conjunction with variable-rate encoders.

In this paper, we introduce a specialized architecture which
efficiently performs high quality shaded rendering of mas-
sive static and dynamic datasets by closely coordinating
visibility- and resolution-aware adaptive data loading with
GPU-accelerated per-frame data decompression, deblocking,
and rendering. The architecture is based on the concept of
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deferred filtering [KLF, FAM*05, WYM10, GIM12], i.e., a
multi-pass approach in which portions of data are recon-
structed in native formats into a temporary buffer before
being processed for rendering using GPU hardware filtering
capabilities. Our novel contributions are the following:

e we introduce the first compression-domain GPU vol-
ume rendering architecture that reduces blocking artifacts
through post-process deblocking performed at rendering
time; the method does not require any modification in
the encoding method and uses a specialized decompress-
filter-and-render approach with pluggable compression
methods and deblocking filters;

e we generalize deferred filtering for GPU volume render-
ing to multi-resolution settings combining levels of detail
with adaptive loading and visibility culling;

e we propose a novel and general deblocking filter based
on projecting voxel scalar values onto rational Bézier
curves capable to reduce compression artifacts across
block boundaries while preserving existing features in
the volume; the filter works without knowledge of the
compression technique.

As demonstrated by our qualitative and quantitative evalua-
tion (Sec. 6), our method is capable to guarantee real-time per-
formance on standard graphics PCs, while improving visual
quality for massive static and dynamic datasets. In particular
we show that aggressive compression of massive time varying
datasets makes it possible to fully store data on the graphics
board for interactive exploration of animated sequences.

2. Related Work

Our architecture extends and combines state-of-the-art re-
sults in compression, filtering, and GPU volume render-
ing. In the following, we only discuss the approaches most
closely related to ours. We refer the reader to very recent
surveys [BRGIG* 14, BHP14] for more information.

Adaptive volume rendering for massive datasets requires
the combination of visibility and level-of-detail culling, for
removing the data not required for a particular image, with
out-of-core compressed data management techniques. This
typically leads to adaptive loading from compressed data rep-
resentations organized into space-partitioned multi-resolution
blocks [HBJP12, Engl1, GMIOS]. In this context, GPU de-
compression during rendering is of great importance to save
storage space and bandwidth at all stages of the process-
ing and rendering pipelines. This requires, however, support
for on-demand, fast and spatially independent decompres-
sion on the GPU [FMO07]. The simplest hardware-supported
fixed-rate block-coding methods (e.g., OpenGL VTC [Cra]
or per-block scalar quantization [YNVO0S8, IGM10]) sup-
port general random access, but have limited flexibility in
terms of supported data formats and achievable compres-
sion. This led to the development of a variety of more
elaborated techniques, all based on the concept of inde-
pendent decoding of volume blocks [BRGIG*14]. While

a few methods employ the GPU only to accelerate decod-
ing, storing data in decompressed form for further process-
ing [WSKWO05,MRH10, SIM* 11], the most advanced tech-
niques [VKG04, FM07, WYM10, GIM12, TBR*12] inter-
leave decompression with rendering stages in order to de-
crease memory needs. Such deferred filtering solutions al-
ready demonstrated their suitability for high-quality render-
ing, as, by decoupling data decoding from data sampling
using a multi-pass approach, they can harness the power of
hardware filtering operations for multi-sampling and/or high-
quality shading. With the possible exception of the COVRA
architecture [GIM12], these methods have so far been lim-
ited to single-resolution slice-based rendering. In this work,
we introduce a deblocking stage and generalize the method
to multi-resolution settings, incorporating adaptive loading,
levels of detail and visibility culling.

Deblocking solutions are meant to improve visual quality
by reducing the block artifacts caused by independent block
coding while preserving sharp edges. In the context of volume
rendering, solutions have been presented only for removing
local discontinuities when interpolating among uncompressed
blocks at different level of details [WWH™*00, GS04, LLY06,
BHMFO08], however deblocking has not been tackled when
dealing with compressed volumes.

The image- and video-processing literature presents a wide
variety of approaches that can be classified into in-loop and
post-loop filtering, depending on where and how the de-
blocking operation is performed [LLLO7]. Only post-loop
techniques, which perform deblocking on the presented im-
age, can achieve deblocking without the original image and
video, and do not require modification of encoding/decoding
methods. For this reason, they are the most appropriate for
incorporation in a volume rendering architecture capable
to support multiple encoding methods. A number of post-
loop methods, however, work directly in the compression
domain [LY04, WZF04, ADF04] and are therefore usable
only in conjunction with specific encodings. Most generic
techniques perform instead a filtering operation over adja-
cent decoded blocks, usually conceptually arranged in three
main phases, first performing edge-detection over adjacent
block boundary values, then classifying discontinuities as
compression artifacts or as genuine high-frequency signals,
and finally smoothing out only the edges marked as artifacts.
Many approaches employ advanced knowledge on per-block
quantization errors to differentiate between true and false
edges [LIL*03, ASD05, WB08], and are therefore hard to
apply to volumetric data with fixed-rate but variable error
encodings, while other techniques perform statistical image
analysis phases to discriminate between features and arti-
facts [LW03, KV S04, KCJ07]. While these methods would
be applicable, their cost is non-negligible when applied to 3D
datasets. Moreover, all these image/video filters are typically
implemented in an architecture based on streaming access
in specific sequential order, while volume rendering requires
view-dependent traversals. In this paper, we use a generic
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Figure 1: Architecture overview. Our algorithm accesses an octree of compressed bricks. At run-time, an adaptive loader selects the most
appropriate LOD and incrementally uploads blocks to GPU memory. At each frame, the GPU working set is subdivided into a set of slabs
orthogonal to the main view direction. Each slab is decompressed, filtered, rendered, and accumulated in a front-to-back order to produce the

final image.

post-loop approach in which deblocking is integrated in an
adaptive renderer traversing data in a view-dependent way.
The filter employed in this paper is a low-complexity solution
based on separable filtering with rational Bézier curves.

3. Method Overview

Our deferred filtering architecture performs at each frame
decoding, filtering and rendering of compressed volume data,
stored in a volume octree of coarse bricks, which are subdi-
vided into smaller compressed blocks (see Fig. 1). Different
block-based compression methods and deblocking filters can
be plugged into the code without affecting the rest of the
pipeline. In particular, we do not require to store any addi-
tional information in the compressed data to perform filtering.
The framework supports real-time deferred deblocking and
rendering on time varying data using a straightforward ap-
proach based of independent coding (or loosely dependent
through dictionary sharing) of timesteps.

At each frame, we select a global desired level of detail de-
pending on the current average projected voxel size of the vol-
ume dataset. As volume datasets (as opposed to, e.g., terrains)
have limited spatial extents, and in most use cases orthogonal
projections or narrow-angle perspectives are typically used
in order to reduce volume distortions, it is reasonable to con-
sider that a single volume sampling rate can be defined for
rendering the entire volume. This assumption allows us to
simplify the rendering pipeline, using a single resolution per
frame, avoiding intra-level data filtering.

Once the level is selected, we perform adaptive refine-
ment, incrementally uploading visible bricks to the GPU,
while discarding bricks not visible because of transfer func-
tion or viewing frustum culling. Since filtering operations
(for interpolation, shading, and deblocking) require access to
neighboring samples to produce an output value, we adopt
the deferred filtering approach of decompressing data into
a temporary decoding buffer, and perform deblocking as a
filtering stage before the final rendering and compositing
stages. In order to manage datasets whose decoded size ex-
ceeds the available GPU memory, we subdivide the volume
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into thick slices, called slabs, orthogonal to the main viewing
direction. For each slab, we perform decoding, deblocking
and rendering before accumulating results in front-to-back
order into the output frame buffer. The decoded and filtered
buffer dimensions are thus proportional to the width of the
deblocking filter. As the final deblocked data can be accessed
using texture fetches and contains enough boundary elements
around the currently rendered samples, the final rendering
stage can perform sampling and gradient computation with
trilinear interpolation to rapidly produce high quality shaded
image.

A specific deblocking filter based on rational Bézier ap-
proximations is presented in Sec. 4, while an optimized GPU-
accelerated implementation of the approach is presented in
Sec. 5.

4. Deblocking Filter

Blocking artifacts are due to signal discontinuities at the bor-
ders of adjacent blocks. In order to reduce them, the signal
close to the border must be modified without introducing
new intra-block discontinuities, which would produce new
artifacts in the resulting visualization. The filter must thus be
block-aware and data-dependent. As we have seen in Sec. 2,
in all previous methods for image and video processing, the
filtering strength is higher in homogeneous regions of the im-
age, and lower wherever high gradient variations are present.
Thus, local features are preserved and blocking artifacts re-
moved. However, in volume rendering, because of shaded
semi-transparent rendering through compositing, small arti-
facts in uniform areas are barely perceivable, whereas arti-
facts at high gradient regions are clearly visible, because of
gradient changes emphasized by the shading process. For this
reason, we can afford a lower filtering strength in homoge-
neous regions and a higher, but not excessive, strength wher-
ever high gradient variations are present near block bound-
aries. This section presents a new deblocking filter for volume
datasets, which takes into account the fact that compression
artifacts are present across block boundaries.

Rational Bézier filtering. Blocking artifacts are due to signal
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Figure 2: Bézier vs rational Bézier filtering. Filtering the compressed signal discontinuity across the boundary of two adjacent blocks in the x
axis direction. The filtered values of the samples close to the boundary are computed by projecting them onto a Bézier or a rational Bézier curve.
Both approaches produce a smooth transition accross the border, but the rational Bézier one provides more accurate approximations to the
uncompressed signal thanks to adding adjustable weights to the control points.

discontinuities at the borders of adjacent blocks. In order to
reduce them, the signal close to the border must be modified
without introducing new intra-block discontinuities, which
would produce new artifacts in the resulting visualization.
To explain the proposed filter easily, let’s consider a set S of
aligned data samples at both sides of the border in a given
axis direction (see Figure 2). Being the intensity information
of the compressed dataset the signal to filter, we propose to
compute the rational Bézier curve defined by the samples
of S (i.e. control points), and project each sample onto the
curve to obtain the filtered value. Thus, the new intensity of a
sample s € S is computed with the following equation:

Yo (a1 —1)""1(si)o;
Ie(ty) = : : 1
() o A — 1) ()

where n is the number of samples of S, I(y) is a function
that returns the compressed intensity of a given sample y,
ts € [0,1] is the position of the sample s within S (being
ts = 0 when s represents the first control point of the curve,
and 7, = 1 when it represents the last one), and ; is a weight
associated to the ith control point. The reason for using ratio-
nal Bézier curves instead of the Bézier ones is that by adding
weights, closer approximations to the original uncompressed
signal can be obtained wherever a feature is detected (see
Figure 2), that allows us to preserve them after filtering. To
do this, a feature detection step is needed to determine which
samples s; represent a local feature. Similarly to [FRDSDF12]
we compute the gradient magnitude ||Vs;|| at each sample
position to modulate filtering strength. From these values we
compute the weights of Equation 1: ®; = M=Vl where
A is a user-defined parameter that controls the intensity of the
filtering. In order to preserve local details in homogeneous re-
gions of the volume, an exponential function is used to weigh
more features with low gradient magnitudes. Thus, a closer

approximation to the uncompressed signal is obtained, what
results in a subtle filtering. On the contrary, lower weights
are assigned to regions with high gradient magnitudes, which
provide smoothing enough to remove the artifacts while pre-
serving the main features. This filter mix the requirements of
being block position aware and data dependent.

Deblocking process. Having the original dataset represented
as a regular volumetric scalar field V = f(x) where x € R3,
we subdivide V into a set of blocks B. Then, each block is
compressed and decompressed individually. In order to apply
our deblocking filter, we first perform the feature detection
step, which computes the gradient magnitude for each voxel
of V with central differences method. After that, the rational
Bézier filter is applied sequentially along the three main axis
directions of the volume. This filtering step can be summa-
rized as follows: given two adjacent blocks b; and b; ;| of Bin
a determined axis direction, the transition across their bound-
ary is filtered by computing all the rational Bézier curves that
traverse it, where each curve is defined by all the axis-aligned
voxels of b; and b; | at a certain point of the boundary (note
that we propose a 1D filter applied over a set of axis-aligned
samples. Therefore, it must be performed for every row of
voxels in the x direction, for every column in the y direction,
etc.). Then, since blocking artifacts appear at block bound-
aries, the voxels closer to the border (half the voxels of each
block) are modified according to the computed curves. Thus,
discontinuities between b; and b; | are effectively smoothed.
The final intensity /¢ (¢,) of a given voxel v, is computed as
the average of its three filtered values (one for each axis).

5. GPU-accelerated implementation

Our GPU-accelerated rendering architecture generalizes cur-
rent adaptive multiresolution renderers by integrating de-
blocking through a deferred filtering approach (See Fig. 1).

(© The Eurographics Association 2014.
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The rendering process combines adaptive CPU data load-
ers with a slab based renderer fully handling decompression,
deblocking, and rendering on the GPU.

Working-set selection closely follows the approach of cur-
rent state-of-the-art adaptive GPU volume renderers [GMIOS,
CNLE09, GIM12], with the important difference that level-of-
detail selection is performed using a world-space threshold
determined on the basis of the current view. This level is
determined by projecting to the screen the voxel size from
the point of the bounding sphere closest to the camera. All
the active bricks are maintained on GPU in a LRU-cache that
stores them in compressed form. At the end of refinement, the
finest level of all the bricks determines the level of resolution
at which rendering will be performed.

Grid index texture with x, y
offsets and scale per brick.

i

Filter buffer. Inner region used for
rendering. Boundary for continuity

Decode slab buffer with.
block subdivision

S |
Figure 3: Slab bricks. Index texture, decode buffer and filter buffer.
Each color identifies a different brick. Pink brick is one level coarser.
Numbers represent x,y offset and scale to map data into the proper
output position. Only highlighted data is used for rendering, while
the two boundary block slices are used for filtering and for continuity
among adjacent slabs.

Deferred filtering approach. At rendering time, data is tra-
versed by subdividing the current working set into axis-
aligned thick slabs of compressed blocks, treatable within the
available GPU resources. For deblocking, each slab needs
two memory buffers to store the decoded blocks and their
filtered versions. Having the buffer of filtered data in a 3D-
texture allows us to exploit hardware trilinear interpolation
and to compute high quality shading effects. Rendering pro-
ceeds front-to-back on a slab-by-slab basis. For each slab,
the active bricks are decoded, using an index texture cre-
ated at each frame by the adaptive loader and containing
for each non-empty brick the 3D index of the data position
inside the compressed brick cache. This texture is used to
identify which data need to be decoded and also for empty
space skipping during rendering. Decompression from the
three main axis have to deal with different transformations
to write data into the proper position of the decode buffer,
thus there are three different kernels to perform decoding. To
smoothly change among adjacent LODs the decoding process
handles a transient situation with bricks at different levels
of detail, expanding all the data at the rendering resolution

(© The Eurographics Association 2014.

using data duplication when needed. A texture with same
dimension of the index texture contains offset and scale in-
formation which is used to properly identify which data has
to be decompressed in a particular output position, see Fig. 3
top-left. After decoding, a flat representation of the current
volume slab is available for filtering. The deblocking filter
needs, for each block, to access neighbors in the 3 directions.
At the same time, rendering needs neighboring information
also for trilinear filtering and gradient computation. For this
reason, decoding, deblocking, and rendering are interleaved
in a pipeline fashion, ensuring that the deblocking operation
has access to one slice of fully decoded neighboring blocks
and rendering has access to two slices of fully deblocked
voxels along the viewing direction, see Fig. 3. Thanks to this
deferred filtering approach, rendering can be performed using
an accelerated raycasting traversal that uses the index texture
for empty space skipping and hardware filtering for accessing
deblocked data.

Bézier filter implementation. The filter is implemented with
two GPU kernels. The first one computes and stores the
®; weights in a texture. The second one performs filtering,
making use of shared memory to minimize the number of
fetches, with each thread writing one output voxel. The GPU
blocks executing this kernel have the same size of the volume
compressed blocks ( b;). Each GPU block is centered on the
junction of 8 adjacent compressed blocks, and computes the
filtered values around this position. To filter along X each
thread fetches two values (and two weights) one from b; and
one from b;, |, store them into shared memory and use them
to perform X filtering. The same process is repeated along Y
and Z. To speed up this process, the voxel values shared by
the three filtering steps are fetched only once. The results of
the three filtering steps are incrementally averaged to produce
the filtered intensity 77 (ty) .

6. Results

An experimental software library has been implemented on
Linux using C++, OpenGL and NVIDIA CUDA 5.5. The out-
of-core octree structure is implemented on top of Berkeley
DB. The choice of the compression technique is orthogonal
to the presented deferred filtering architecture. In this paper
we decided to test two compression approaches to show its
general validity: the de-facto standard Hierarchical Vector
Quantization (HVQ) method [SWO03] and a recent real-time
decoding technique [GIM12] achieving state-of-the-art re-
sults in terms of compression quality.

‘We have tested our system with a variety of high resolu-
tion models and settings. In this paper, we discuss the re-
sults obtained on three datasets: a micro-CT scan of a Veiled
Chameleon specimen (1024 x 1024 x 1080, 16bit/sample:
2.1GB; courtesy of Digital Morphology Project, the CTLab
and the University of Texas), a 60 time steps time-varying
Supernova simulation (432% x 60, float: 18GB; courtesy of
Dr. John Blondin at North Carolina State University through
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block size B = 8, dictionary size D = 1024, and sparsity K = 6 (Chameleon, Supernova) and K = 4 (Turbulence). From left to right: compressed
without deblocking, compressed with deblocking and original datasets. On colored inset images it is possible to appreciate the compression

artifacts at block boundaries and how they are reduced in the deblocked version. Artifacts are emphasized in inset image with gradient coded as

color. Inset images have been used to compute SSIM and MS-SSIM values.

SciDAC Institute for Ultrascale Visualization) and a 512 time
steps time-varying Turbulence simulation (5 124, float: 256
GB, central crop of the even time steps of a 1024* dataset;
courtesy of the Johns Hopkins Turbulence Database initia-
tive [LPW*08]). All the tests have been performed on an Intel
3.5 GHz Core 17 PC with a NVIDIA GTX 780 with 3GB of
video memory. The decompressed size of two of the three
datasets exceeds the available GPU RAM, which shows the
scalability of the proposed approach.

We tested our approach using strong compression rates
(under 1-bit/voxel). This allowed us to test the use case of
real-time exploration of time-varying datasets during ani-
mation playback with pre-loaded compressed data in GPU
memory. The Chameleon and Supernova datasets have been
compressed using a dictionary size of D = 4096 for HVQ,
and a dictionary size of D = 1024 with sparsity K = 6 for
sparse coding. The larger Turbulence dataset was, instead,
compressed with D = 2048 for HVQ and D = 1024 with
sparsity K = 4 for sparse coding. In all cases, block size was
set to B = 8 voxels. The value of the deblocking filtering
parameter A has been identified through a parameter space
search to get a reasonable trade-off among artifacts filtering
and features preservation. For all the tests presented in this
paper we have found A = 3 to be a good compromise value.

Method Metric | Cham 2.1 GB | Super 18 GB | Turb 256 GB
10242 % 1080 | 432° x 60 5124

K-SVD bps 0.25 0.07 0.20
SSIM com. 0.67 0.69 0.77

SSIM com.+deb. 0.72 0.76 0.84

MS-SSIM com. 0.81 0.75 0.76

MS-SSIM com.+dch. 0.83 0.80 0.84

HYQ bps 0.63 0.17 0.71
SSIM com. 0.69 0.67 0.82

SSIM com.+deb. 0.78 0.76 0.89

MS-SSIM com. 0.85 0.72 0.86

MS-SSIM com.+dch. 0.89 0.78 0.90

Table 1: Datasets and image comparison results. Dataset resolu-
tions, bits-per-sample (bps) and perceptual metric values for two
compression methods, HVQ and K-SVD. SSIM and MS-SSIM values
are related to inset images presented in Fig. 4 (sparse coding) and
Fig. 5 (HVQ) and are presented for the compressed version without
deblocking (com.) and with deblocking (com.+deb.)

Interactive performance.. All rendering tests have been per-
formed on a 800 x 450 pixels viewport with a screen tol-
erance of 1 pixel. Frame rates are generally above 10 fps,
ranging between 6 fps (Turbulence whole view) and 20 fps
(Supernova). Single frame working set size ranges from 12-
MVoxels (Supernova closeup), up to 128-MVoxels (Turbu-
lence whole view). Peak throughput performance is achieved
for the Turbulence dataset with 768-M Voxels/sec. Filtering
quality and rendering performance are also illustrated in an
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a) b) c) d)
Figure 5: Results using the HVQ compression method. Com-
parison between images of compressed, (a) and (c), and com-
pressed+deblocked versions, (b) and (d), of the three datasets. Dictio-
nary size for HVQ was D = 4096 for the first two datasets, D = 2048
for Turbulence. Artifacts are emphasized in images in rows (c) and
(d) with gradient coded as color.

Uncompressed (full resolution) Uncompressed (low resolutlon)

Compressed Deblocked
Figure 6: Visual quality comparison. The uncompressed lower res-
olution has the same occupancy as the compressed version. Our
deblocked version significantly reduce blocking artifacts while pre-
serving main important features.

accompanying video. With the proposed system it is possible
to interactively inspect massive volumes and perform transfer
function changes in real-time, even for time-varying models.

Deblocking filter quality assessment. For evaluating our
work we show a visual comparison of the three datasets
discussed in the paper (see Fig. 4). To better convey the
visual impact of blocking artifacts, we emphasize the ef-
fects of compression by showing the gradient quality. Using
our filter significantly reduce existing visual artifacts caused
by block-based compression methods. We also performed a
quantitative evaluation of our results by running the Struc-
tural Similarity (SSIM) [WBSS04] and the Multi-Scale SSIM
(MS-SSIM) [WSBO03] perceptual metrics, which are better
suited than traditional signal fidelity measures like SNR and
PSNR to evaluate blockiness. Existing calibration reports
(DB-LIVE [SSB06], DB-TID2008 [PLE*08]) support our
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choice to use both metrics for image quality assessment when
blocking artifacts are present. Because of SSIM is a grayscale
metric, we compute the SSIM of each color channel of our
images and use the geometric mean as an overall distortion
measure, as it is done by Rajashekar et al. in [RWS09]. The
SSIM quality index values obtained for all volume rendered
image insets of Fig. 4 and Fig. 5 are always higher for im-
ages from deblocked volumes than those from the just com-
pressed versions. With SSIM we got [5 —7%] of gain for
the K-SVD method and of [6 — 11%] for HVQ. By using
the MS-SSIM, the gain is of [2 —8%)] for K-SVD and of
[4 — 6%] for HVQ. We obtained that deblocked volumes
exhibit better perceptual image qualities. All values are re-
ported in Table 1. The effectiveness of our deblocking filter
coupled with standard and state-of-the-art block-based com-
pression methods is also confirmed through an image-based
comparison that show images of the Supernova dataset in
its uncompressed version, a downsampled lower-resolution
version, a decompressed version without deblocking and the
corresponding deblocked version (Fig. 6). The lower resolu-
tion version was computed averaging voxel values and has
the same memory footprint as the compressed and deblocked
ones. Being Q the image quality, we can observe in Fig. 6

that Olowres < Qcompressed < Odeblocked < O fullres-

7. Conclusions and Future Work

We have presented the first GPU volume rendering archi-
tecture working on compressed data that improves visual
quality by reducing blocking artifacts at rendering time. The
method supports high quality shaded rendering from general
block-compressed data formats, extending deferred filtering
to support adaptive multi-resolution data loading, levels of de-
tail and visibility culling. Our decompress-filter-and-render
approach supports different compression methods and de-
blocking filters. We proposed a novel deblocking filter based
on rational Bézier approximations. The method works with-
out a-priori knowledge of the employed compression tech-
nique and does not require to modify data encoding. We have
shown how massive static and dynamic datasets, including a
5124 time varying simulation, can be decoded, filtered and
rendered in real-time on commodity graphics platforms. Re-
sults show improved visual quality measured using SSIM and
MS-SSIM metrics. Despite we obtain interactive frame rates,
our filter is still computationally intensive, thus our future
work will concentrate on improving filtering speed.
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