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Abstract

We present a simple, fast and robust technique for semi-automatic 2D-3D registration capable to align a large set
of unordered images to a massive point cloud with minimal human effort. Our method converts the hard to solve
image-to-geometry registration problem in a Structure-from-Motion (SfM) plus a 3D-3D registration problem. We
exploit a SfM framework that, starting just from the unordered image collection, computes an estimate of camera
parameters and a sparse 3D geometry deriving from matched image features. We then coarsely register this model
to the given 3D geometry by estimating a global scale and absolute orientation using minimal manual intervention.
A specialized sparse bundle adjustment (SBA) step, exploiting the correspondence between the model deriving
Jfrom image features and the fine input 3D geometry, is then used to refine intrinsic and extrinsic parameters of
each camera. Output data is suitable for photo blending frameworks to produce seamless colored models. The

effectiveness of the method is demonstrated on a series of real-world 3D/2D Cultural Heritage datasets.

Categories and Subject Descriptors (according to ACM CCS):

Computer Graphics [1.3.3]: Picture and Image

Generation—; Computer Graphics [I.3.7]: Three-Dimensional Graphics and Realism—.

1. Introduction

Modern 3D acquisition systems are able to rapidly digitize
an object geometry with high accuracy and resolution, pro-
ducing massive digital models with billions of samples. Such
highly detailed models are extremely well suited for Cul-
tural Heritage (CH), where both dense and extensive sam-
pling is required. Pure geometry acquisition is the first step
to digitally preserve CH items to prevent them from loss and
deterioration; it is useful for renovation planning, research,
and digital simulation. However, just a dense geometry is not
enough for all CH needs: additional color information plays
a key role in reconstructing a high-quality digital model.

Many approaches exist to obtain object color. Some range
scanners acquire both color and range data at the same time,
but their color resolution and quality are often insufficient
for CH purposes; moreover, some of them lack this capabil-
ity at all. One possible and automatic solution is a calibrated
camera rigidly mounted on the scanner. Unfortunately, the
different position of the laser beam and the image sensor
results in possible occlusions, so that the color in some por-
tions of the geometry will probably be missed. Even when
these alignment problems can be solved, this simultaneous
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acquisition approach has too many limitations. For exam-
ple, lighting conditions should often be different between 3D
scanning and photographic campaigns. Moreover, often the
photographic dataset is required to be modified in a second
moment, e.g., to evaluate the effects of restoration. Recent
powerful sensors allow us to measure color at a high reso-
lution by simply using off-the-shelf cameras. Color acqui-
sition with a free-handheld camera is thus highly desirable,
but gives rise to 2D/3D registration problems.

Several approaches have been proposed that cope with the
image to geometry registration problem, ranging from man-
ual to semi or totally automatic pipelines. The more they
are automatic, the more these pipelines rely on features in
the geometry and in the image set, or on mutual informa-
tion such as reflectance, color or normal attributes. Although
manual methods are quite reliable, they are time-consuming
and require a lot of user effort; on the other hand, completely
automatic approaches are relatively fast, but their success de-
pends deeply on the object type; hence, they are not robust
enough to work with a generic dataset.

Our objective is the design of a practically useful robust
method for simultaneously registering the input photos to the
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geometry with minimal user intervention and with no prior
knowledge about the image set or the object geometry. The
underlying idea of our approach is to exploit the state-of-the-
art robust structure-from-motion (SfM) algorithms from the
image-based 3D reconstruction domain. These methods can-
not fully replace active acquisition methods for complete 3D
reconstruction in the general case, but have proved to pro-
duce good results in self-calibrating sets of images. In this
paper, we exploit a SfM method for unordered image col-
lections to coarsely estimate relative camera poses, intrinsic
camera parameters, as well as a sparse 3D model deriving
from matched image features. The user has to manually se-
lect few 3D/2D matches in one image to coarsely map the
StM model to the dense input geometry in an affine man-
ner. Then, a specialized sparse bundle adjustment (SBA),
which additionally exploits the correspondence between ge-
ometries, solves for the final intrinsic and extrinsic camera
parameters of all cameras. Our approach combines and ex-
tends state-of-the-art solutions, leading to an integrated sys-
tem with unprecedented capabilities. In particular, our novel
semi-automatic 2D/3D registration pipeline is capable to
rapidly and precisely align a set of photos to the geometry
of an acquired real object without prior knowledge on input
data. We have evaluated our technique on a series of real-
world 3D/2D CH datasets. Results show that the obtained
2D/3D calibration is suitable for photo blending frameworks
to produce globally coherent colored models.

2. Related work

Image-to-geometry is a well-known topic in Computer
Graphics and Computer Vision. Numerous techniques exist
that try to solve this wide and extensively studied problem in
different ways. These methods can be divided in three major
classes, whether they depend on matches, features or statis-
tics. For an overview of registration results in terms of dif-
ferent information-theoretic metrics please refer to the sur-
vey of Hantak and Lastra [HLO6]. The output of these meth-
ods (intrinsic and extrinsic parameters aligning each camera
with a 3D model), together with a geometry and a set of
photos, are used in a texture blending framework to obtain
colored models [PGC11]. Here, we discuss the approaches
most closely related to our contribution.

Manual 2D-3D correspondence selection. These methods
deeply depend on the user intervention, which has to manu-
ally select a number of correspondences between each im-
age and the 3D geometry. Since this straightforward ap-
proach is tiring and time-consuming, some works try to re-
duce or ease the operations performed by the user. Borgeat
et al. [BPB*09] exploit a GPU implementation of the SIFT
algorithm to extract features in an interactive way in the
current image and in the rendered model, to assist the
user, showing him possible correspondences. Another ap-
proach [FDG*03] is based on a graph representation where
the nodes are the 2D photos and the 3D model, while arcs

encode both image-to-geometry and image-to-image corre-
spondences. A graph-based framework exploits dataset re-
dundancy and decreases the number of manually selected
matches; further, it is easier to find image-to-image than
image-to-geometry point pairs. Apart from the robustness
of these manual approaches, they easily become unfeasible
with large image sets. Our method asks the user to align a
very small subset of images and it automatically computes
the rest of image-to-image correspondences. Thus, it mini-
mizes the amount of input given by the user, remaining suit-
able even if the image set size grows (hundred of photos).

Automatic 2D-3D feature detection and matching.
Feature-based techniques find features that are present on
both photos and the 3D model, and try to find consistent cor-
respondences to solve the image-to-geometry problem in a
completely automatic framework. This problem is in general
very complex, since photographs and geometric models have
a very different appearance, and it is hard to automatically
find and match similar features. For these reasons, methods
in this area are limited to some specific models. For instance,
some works are employed to align building and urban envi-
ronment datasets, based on the assumption that architectural
models result in sharp edges in 3D and high contrast features
in 2D. Some of them [SA01, KSSS09] rely on line features
in 3D LIDAR datasets and in maps or floor plan images of
outdoor and indoor scenes. Stamos et al. [SLC*08] devel-
oped a registration pipeline which relies on the presence of
linear or circular 3D features in the range images. Other ap-
proaches rely on orthogonality constraints [LSO5], clusters
of vertical and horizontal lines [LYWZ06], or contours and
silhouettes [LHSO0]. Although we require a small user in-
tervention, our method is applicable to a more general en-
vironment, since we rely only on finding similarities among
images, which is a much simpler problem.

Semi-automatic 2D-3D statistical correlation. Statistics-
based approaches are mostly based on the Mutual Informa-
tion statistical measure, proposed for the first time by Viola
and Wells [VI97], and compute camera poses by correlat-
ing information from images and the rendering of the ge-
ometry. Such information is the color or gray-scale inten-
sity from photos and, exploiting range scanner capability of
measuring intensity of the reflected laser beam, one or more
3D attributes, such as infra-red intensity [WLH*04, HL06],
reflectance [IOT*07], LIDAR elevation and probability of
detection [MKI09]. Corsini et al. [CDPS09] proposed an
illumination-based registration that renders the geometry us-
ing ambient occlusion, specularity and normal cues. These
approaches have two main drawbacks: first, they require a
camera pose initialization to converge to the right solution,
thus they are not completely automatic; then, attributes used
for correlation purposes are not always provided. Again, our
method is suitable for a more generic dataset, because it does
not depend on any additional attribute.
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Geometric multi-view reconstruction and matching.
Some state-of-the-art works convert the operation of align-
ing an image set with a 3D model into a 3D-3D registra-
tion task. With a robust multi-view techniques they both find
a global coarse camera pose estimation and derive a sparse
point cloud from images. The alignment of the input geome-
try with the computed point cloud implicitly solves the origi-
nal 2D-3D registration problem. Zhao et al [ZNHO04] recover
relative camera positions and a point cloud from a video se-
quence using motion stereo. The user has to manually regis-
ter only two frames with the 3D model to obtain the absolute
orientation and global scale. Then, an Iterative Closest Point
(ICP) approach refines the registration. Instead of being lim-
ited to dense and ordered frame sequences, our method deals
with unordered set of sufficiently overlapping photos, with
a comparable amount of user intervention. Moreover, this
method performs a rigid ICP refinement, while we adopt a
deformable registration that uses a SBA to refine parame-
ters of each single camera independently. Similarly to our,
a recent work [LL09] addresses the 2D/3D alignment with
a similar SfM framework and with an unordered set of im-
ages; however, the refinement step in that method depends
on the presence of planes in the geometry. Thus, special
light patterns are projected on planes to artificially produce
features in uniform surfaces. As mentioned before, our ap-
proach is totally independent from these kinds of assump-
tions. Further, the cost function in that work depends on
measures in both world (point-to-plane distances) and pixel
(re-projection errors) coordinates; it weights the contribu-
tion of these terms with a heuristic parameter, that heavily
depends on the object geometry/extent, and requires man-
ual tuning. Conversely, our energy function contains only
squared error measurements in image space and does not re-
quire any additional parameter.

3. Technique overview

Our technique is outlined in Fig. 1. We take as input a dense
3D model and a set of n photographs. The photographic
dataset can cover the complete surface of the 3D object, only
a part of it, or a larger area. No constraints are placed on the
nature of the input dense geometry; it could be either a tri-
angle mesh or a point cloud, and we don’t need particular
geometric attribute (e.g., normals or influence radii) or the
presence or known geometric features (e.g., lines).

Our 2D/3D calibration is performed in three stages: SfM,
coarse alignment, and fine registration. In the first fully au-
tomatic stage, we apply a SfM algorithm for unordered im-
age collection to self-calibrate images and obtain an initial
sparse 3D reconstruction of the part of the model covered
by the photographic campaign (Sec. 5). This provides us
a sparse 3D model derived from matched image features,
all camera poses in a common reference frame, and the in-
trinsic parameters of each camera. In the second stage, the
StM model, reconstructed up to an unknown scale-factor,
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is coarsely aligned to the dense input 3D model with min-
imal user intervention. The user manually selects correspon-
dences between a small subset of photos (typically just one)
and the detailed model (Sec. 6). These matches, together
with camera parameters, are used to solve for the affine
transformation mapping the SfM world to the dense model.
In the final stage, a SBA, which constrains the features de-
tected in the images to lie on the fine 3D model, calcu-
lates the final registration in a non-rigid deformable man-
ner (Sec. 7). The output data (camera parameters) can then
be used, together with the n photos and the dense model, to
blend the texture data on the geometry to produce a globally
coherent colored model.

[ user | [Dense 3b model | [ nPhotos |-+

Structure from Motion
Reconstruction

Coarse registration

Registration refinement

2D/3D
Registration
Pipeline

| n Camera parameters |

. Yoo,
Photo blending

Dense colored
3D model

Figure 1: Pipeline. Given the image set, a SfM algorithm
computes a sparse point cloud and related camera poses.
The user manually aligns one or more photographs to the
dense model and our method uses this cue to coarsely reg-
ister the SfM and the input model. The final registration, re-
fined with a specialized SBA, can be used to obtain a glob-
ally coherent colored model, blending all registered photos
together on the input point cloud.

4. Photo capture

Besides avoiding to take images with excessive blur or noise,
and under- or over-exposured regions, our pipeline does not
impose particular constraints on the image set, since SfM
algorithms exist to cope with challenging data, such as im-
ages that exhibit large variations in illumination, viewpoint,
zoom, resolution, and contain outliers and clutters. For a
description of typical SfM capabilities and limitations see
the work of Snavely et al. [SSSOS8]. Further, techniques
exist which perform texture blending for producing seam-
less colored models with such non-ideal color information
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[PGC11]. For both methods, we only need sufficient overlap
among images. A good practice is to have the same feature
being visible in, at least, three or four photos.

5. Structure from Motion reconstruction

The first step of our pipeline is the self-calibration of the im-
age collection, independently from the dense 3D geometry.
This task is performed using a robust StM algorithm suit-
able for aligning unordered large image collections [SSS06].
For each image, the method computes several thousand SIFT
keypoints [Low04] and uses approximate nearest neigh-
bors [AMN*98] and RANSAC [FB81] approaches to esti-
mate right matches between them across multiple images.
Then, a SfM algorithm recovers camera poses and sparse
geometry by minimizing a non-linear energy function pro-
portional to the re-projection error of 3D points into origi-
nal image features. Given N¢ photos, the output is a list of
N¢ estimations of intrinsic (i.e., focal length, principal point
and distortion coefficients) and extrinsic (i.e., rotation and
translation) camera parameters C = [c],¢2, ..., CN, ), @ list of
Np 3D points P = [pl,pz., ..‘,pr} (i.e., sparse points), and
pixel coordinates s; ; of the projection of a sparse point p; in
the i,;, input image (i.e., keypoint location for that 3D point).

6. Coarse alignment

After the SfM stage, we have two geometric representations
with different scales, reference frames and resolutions: one
dense, provided as input, and the other sparse, deriving from
SfM. To position cameras into the reference frame of the
detailed input model, we need to find the affine transfor-
mation that determines the scale, rotation and translation,
which better aligns the coarse and fine geometric models.
Unfortunately, an automatic alignment approach is not re-
liable and would often be infeasible, because we are deal-
ing with a sparse-to-dense registration of models at differ-
ent scales, and we do not want to impose prior knowledge
on geometry. For instance, a feature-based method is not
appropriate for such subset-matching problem, i.e., where
one point-set is matched to a point-set of greater cardinal-
ity. 4PCS [AMCOO8], quadratic assignment [BCPP9S], or
generic non-linear optimization techniques could be appli-
cable, but they are time-consuming and their convergence is
not always guaranteed. We thus prefer to require the inter-
vention of the user, which can be minimal since very few
parameters need to be estimated. Thus, the user has to align
one image to the fine model by graphically selecting few
matches (i.e., typically from 7 to 12) between 3D points in
the fine model and image pixels. Using the intrinsic param-
eters computed by SfM, we can estimate the pose of the se-
lected camera in the reference frame of the fine model by
minimizing re-projection error, i.e. the sum of squared dis-
tances between the picked image points and the projection of
the selected object points. Optionally, the process can be re-
peated independently for two or three images, chosen so that

the mutual distances between camera pairs are as large as
possible, minimizing error drift. It should be noted that this
procedure assumes that the SfM pipeline is capable to pro-
duce a model which is approximately correct and does not
contain major geometric errors, especially systematic ones.
If this is not the case, e.g., in the presence of large drifts pos-
sibly generated by sequential SfM approaches, coarse align-
ment may fail. In our experience, such failure case occurs
very rarely in practice. Moreover, drift-related problems can
be mitigated by using more robust multi-stage SfM pipelines
[GFF10, SSS10] or by manually splitting the input image
dataset, applying our technique to each obtained subset, and
merging the results before refinement.

Using the intrinsic and extrinsic parameters estimated for
that small set of cameras, we build a set of correspondences
between points in the dense and sparse SfM models. For
each feature in the chosen image subset, which already cor-
responds with a point in the sparse 3D from SfM, we cast
a ray to find the corresponding point in the detailed model.
At the end of this process, we obtain two sparse point clouds
that are subsets of the two 3D geometries with known cor-
respondences. We then find the global scale factor and a
rigid alignment of these point-sets (i.e., rotation and trans-
lation) by applying a well-known absolute orientation algo-
rithm [Hor87]. We implemented it in a robust RANSAC-
based framework to remove possible outliers due to the non-
complete overlapping among datasets [CMKO3]. This affine
transformation is then applied to the StM model to approx-
imately register the sparse geometry and all the cameras in
the same reference frame of the dense model.

olc.. M, (p,)
G,

Figure 2: Fine registration. A coarse registration between
the original (white dots) and the SfM geometry (gray dots) is
given. The fine registration jointly tunes camera parameters
and sparse point positions to make the SfM geometry fit as
much as possible the fine model; it minimizes the error be-
tween keypoints s and the re-projections of truncated nearest
neighbor points NN (p) in the dense model.
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7. Fine alignment

After the coarse alignment stage, we have a good initial con-
figuration of the camera poses and their intrinsic parame-
ters. However, these stages do not fully exploit the amount
of accurate geometrical data present in the dense model. In
fact, SfM reconstruction is completely independent from the
fine 3D and it produces a list of camera parameters and 3D
points consistent only in the domain of images. To improve
the current registration, we should link this result with the
dense geometry, putting some constraints on the sparse 3D
points; more precisely, it is desirable that the SfM geometry
fits as much as possible the fine model. To obtain a fully con-
sistent model, we should formulate our fine alignment in a
non-rigid manner, jointly moving the sparse points towards
the dense 3D and accordingly tuning the parameters of each
camera independently. We refine a camera model consisting
in intrinsic parameters (i.e., focal length, principal point and
the first two radial distortion coefficients) and extrinsic pa-
rameters (i.e., the rotation-translation map).

In our approach, as shown in Fig. 2, for each sparse 3D point
pj (gray dots), we compute the nearest neighbor NN (p j)
(black dots) in the fine model F (white dots) and we find
optimal camera parameters C and 3D points P, that minimize
the following cost function:

Np Nc

EC.P)=Y Y vij|Q(CNNE (p) = sij]S (D

j=li=1

where the term v;; is a visibility factor, that is equal to 1
if the point p; is visible in the image i, otherwise is 0, s; ;
is the keypoint image coordinate (see Sec. 5) and Q(C, p)
is a function that projects a 3D point p into an image with
parameters C. With our modified Q (C,NNp (p)) that con-
tains nearest points on the original model, we estimate a re-
projection error in the image domain that strictly depends on
the fine geometry, forcing the configuration of the cameras to
be consistent with it. The big circle in Fig. 2 highlights how,
by moving the point p; and the camera C;, we reduce the
distance between Q (C,NNr (p)) and s, ;, as shown by the
arrows. This is done jointly on all sparse points and all cam-
eras. The refinement is formulated as a SBA, a non-linear
least squares minimization problem on the 3D structure and
viewing parameters.

To compute our cost function, we perform a point-to-surface
distance computation, finding the point on the fine model/-
surface nearest to each sparse point. If our input model is a
triangle mesh, we find the projection of a point on the nearest
triangle. In case of a point cloud input model, since a point-
to-point metrics is not recommended due to errors caused by
the original sampling, we need to find the surface that best
approximate the point cloud. We use a fitting plane approxi-
mation, because the initial coarse alignment gives us enough
confidence that the sparse point is close to the surface. To
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quickly perform this operation, we build a kd-tree populated
with the points in the dense model. For each sparse point p;
we extract a fixed number of its neighbors (e.g., eight) and
we find their interpolating plane P; (Fig. 2). NNr (p;) is the
point on the plane nearest to p;. If all sparse points are valid
(i.e., inliers) the algorithm will produces a reliable registra-
tion. On the other hand, outliers (e.g., point py in Fig. 2) are
likely to result in fluctuating nearest point estimations on the
surface or, in general, large re-projection errors. To reduce
the contribution from outliers, we adopt a robust estimation
function by truncating the searching distance to a maximum
allowed value. In practice, if the distance between p; and
the computed point NNg (f;) is higher than a tolerance 7,
we force the nearest neighbor to the point on a sphere of
radius 7 and center pj nearest to the plane P, (Fig. 2).

Since the coarse alignment had produced a good initial es-
timate of the camera parameters, we can perform a local
search over these parameters to find the final solution. To
solve the minimization we chose the Levenberg-Marquardt
algorithm [NWO06]; thanks to its effective damping strategy,
converges quickly from a wide range of initial guesses.

8. Results

Our technique was implemented on Linux using C++. The
SfM software used for our tests is Bundler [SSS06, Sna].
For the minimization problem in the refinement step, we
employ a C/C++ package for generic SBA based on the
Levenberg-Marquardt algorithm, developed by Lourakis and
Argyros [LAO9]. The user interface to manually calibrate in-
put photos is built using OpenGL and Qt tools. Our bench-
marks were executed on a PC with a Dual-Core AMD
Athlon II X2 3.1GHz CPU Processor, 4GB RAM, a 500GB
7200RPM Hard Disk and a NVidia GeForce GTX 460. To
evaluate the effectiveness of our approach, in terms of com-
putational time and quality, we present results on three CH
datasets mapped with a large number of images: a Grave
from a prehistoric necropolis and two parts of a Church, aro-
man basilica. The dense geometries are acquired with a time-
of-flight laser scanner Leica ScanStation2 and the photos are
captured with a Nikon D200 camera. Details on dataset sizes
and processing times are listed in Table 1. In this paper, we
focus on evaluating our method on CH test cases, compar-
ing it with results obtained through manual alignment. As a
future work, we plan to also numerically evaluate the results
with respect to ground truth (e.g., using calibrated cameras
and markers [SVHVG™*08]).

Our method requires setting only one parameter: the global
tolerance ¢ for outlier removal. In this work, we automati-
cally initialize this value to ten times the average sampling
distance of the fine model. This works well for approxi-
mately uniformly sampled models. We are currently work-
ing on making the method more robust in the presence of
variable sampling rate by locally adapting the tolerance to a
multiple of the local sampling rate of the fine model.
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Model 3D (# Points) Images (wxh) SfM (# Points)  Manual 2D/3D  Coarse Fine Total
Grave 8.3M 21 (1936x1296)  17m36s(19K) 3m/1 photo 4s 18m20s  40m
Church’s Apse 14M 40 (1936x1296)  10m50s(7.6K) 7m/2 photos 6s 13m40s  32m
Church’s Detail 4.7 49 (1936x1296)  28m14s(17K) 4m/1 photo 8s 22m50s  55m

Table 1: Datasets and computational times. We show the sizes of input geometry and image dataset, and the statistics about
the time spent to compute the SfM, to manually align a small subset of photos, and to perform coarse and fine registrations.

Average reprojection error variation
10 T T T T T T

Pixels

2 4 6 8 10 12 14 18 18 20
Cameras

Figure 3: Re-projection error variation (Grave). Each two
bar set shows the per-camera average re-projection error
variation before (left) and after (right) the refinement. Our
algorithm improves the average error up to 4 pixels. Global
average error over all images is decreased by about 2 pixels.

Figure 4: Visual re-projection error variation (Grave
model). One image from the input dataset is presented. In the
inset, corresponding with the white rectangle in the larger
image, we show in red the detected SIFT points and in
green the re-projection of 3D nearest neighbor points af-
ter the coarse alignment. The refinement step reduces the
re-projection error, moving green pixels towards the SIFTs.
Cyan pixels are the re-projections after the minimization.

The Grave model consists in a dense geometry of 8M points
and 21 photos. The fine geometry was acquired with 2mm
sampling space. Using only information from images, the
StM routine takes less than 18 minutes to produce a sparse
point cloud of 19K points (0.2% of the dense model). The

user spent 3 minutes to manually register one single im-
age (12 2D/3D correspondences selected); this time is com-
parable to per-image manual alignment times presented in
Franken et al. [FDG*05]. We save 95% of the user inter-
vention, drastically reducing the manual operation. Coarse
and fine registrations respectively take 4 seconds and about
18 minutes. The total time, including SfM computation, is
39 minutes. Before and after the fine registration, we esti-
mate the re-projection error both for each single camera and
globally for the entire image dataset. Figure 3 shows for each
photo the variation of the average re-projection error in pixel
units; our refinement strategy reduces the error by up to 4
pixels. The global average re-projection error over all the im-
ages goes from 5.8 to 3.6 pixels. Figure 4 shows one of the
acquired photos and, in a close view, how the refinement step
moves re-projection of 3D nearest neighbor points, obtained
after the coarse alignment (green dots), towards the detected
SIFT points (red dots). Cyan pixels are the re-projections
after the minimization. Figure 5 shows how the output of
the proposed method is used in a texture blending frame-
work [PGC11] to obtain globally coherent colored models.

The fine geometry of the Church’s Apse model, acquired at
sub-centimetric resolution, has 14M points, and 40 associ-
ated photographs. The SfM data is computed in 11 min-
utes and contains 7.6K points (i.e., 0.05% of the dense
model). Generally, the user aligns the first image and, since
the coarse alignment takes only few seconds, it can quickly
check whether the result is reasonable as a good initial guess
for the local refinement or he has to register another photo.
In this case, he decided to select 2D/3D correspondences of
another image before launching the minimization routine.
The manual operation takes 7 minutes, while the algorithm
computes fine registration in 14 minutes. The entire registra-
tion, included SfM step, takes about 32 minutes. With our
technique, we produce a robust result saving the 90% of the
estimated time of the manual pipeline. The final global re-
projection error is 1.7 pixels. The colored model after apply-
ing blending algorithms is shown in Figure. 6.

The last test is performed on another detail of the Church
model. The fine geometry contains 4.7M points, while the
StM point set has 17K points; we have acquired 49 pho-
tos. Here, the motivation to show this dataset is that its STM
geometry contains a lot of outliers (Figure 7), due to the
complexity of the input image set (e.g., reflections on mir-
rors and specular highlights), or belonging to object parts
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Figure 6: Church’s Apse. Colored model obtained using the
output of our method in a photo blending framework.

not acquired with the time-of-light scanner. In other words,
there are a big number of SfM points that do not belong
to the dense model and/or to the real geometry. The user
aligns only one single image and after the fine registration
and photo blending we obtain the colored model in Figure 8.
The global average re-projection error is 1.2 pixels. Thus, in
these non-ideal cases our method is very robust to outliers,
without increasing the user intervention too.
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Figure 7: Outliers. Registration of sparse (red) and dense
(white) geometries of a Church’s Detail. SfM geometry con-
tains a lot of outliers. Our method proves to be robust in this
non-ideal case, without requiring more user intervention.

9. Conclusions and future work

‘We have presented an efficient, fast and robust technique for
registering a set of images with a 3D geometry. Our semi-
automatic approach minimizes the user intervention and is
generally applicable to different kinds of 3D models. The
quality and reliability of the method is demonstrated on a
series of real-world Cultural Heritage 3D/2D datasets. It
proves to be robust in the presence of input data with big
amount of outliers, and produces a good input data for photo
blending framework. The natural next challenging step in fu-
ture works should be the development of a reliable way to
solve the sparse-to-fine geometry alignment in an automatic
manner, to completely avoid manual intervention.
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