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Abstract
Draping 2D vectorial information over a 3D terrain elevation model is usually performed by real-time rendering
to texture. In the case of linear feature representation, there are several specific problems using the texturing
approach, specially when using multi-resolution textures. These problems are related to visual quality, aliasing
artifacts and rendering performance.
In this paper, we address the problems of 2D line rasterization on a multi-resolution texturing engine from a
pragmatical point of view; some alternative solutions are presented, compared and evaluated. For each solution
we have analyzed the visual quality, the impact on the rendering performance and the memory consumption. The
study performed in this work is based on an OpenGL implementation of a clipmap-based multi-resolution texturing
system, and is oriented towards the use of inexpensive consumer graphics hardware.

1. Introduction

It is very common in interactive 3D GIS environments to
project 2D vectorial information (non-protruding features)
over 3D geometric terrain models. There are important is-
sues in dealing with this data, especially when they have
to be integrated in visualization systems for massive terrain
models [PG07]. In general terms, there are several alterna-
tives for rendering this data, mainly in two opposite direc-
tions. The first one is to create the geometric primitives for
the 2D information draped over the 3D surface, as described
in [WKW∗03], [ARJ06] and [SBZ07]. The other approach
is to rasterize this 2D information and then apply it to the ge-
ometry using the texturing capabilities of the graphics hard-
ware, as suggested by [KD02], [BW05] or more recently by
[VTW11]. This work follows the second strategy because of
its better ability to adapt to dynamic geometry, as there is no
coupling with the terrain engine and because its lower cost
with complex vectorial data. This data is rendered through a
multi-resolution texturing engine, as described in [TSH09],
that constitutes the context in which the proposed techniques
are developed, tested and analyzed. In such a system, line
primitives present some specific rendering problems that do
not exist in other types of primitive, such as points or poly-
gons.

In this paper, these problems are analyzed and described,
and several possible solutions are implemented and eval-
uated. It is not a theoretical study, but a practical ap-

proach in the seek of a working implementation that uses
the current available consumer graphics hardware in or-
der to obtain the highest quality without an important per-
formance penalty to high demanding interactive applica-
tions. The proposed solutions are practical and can be effec-
tively integrated in multiresolution terrain rendering frame-
works [GMC∗06, YWDF11, LC10, TSH09]. The rest of the
paper is organized as follows. Section 2 describes the textur-
ing engine that will be the environment where the proposed
techniques are developed, integrated and tested. Section 3
explain the problems found in a naive implementation of the
line rendering in the texturing environment. Those problems
are faced in section 4 with the development of different alter-
native solutions. Section 5 give the results for each solutions
and some conclusions are presented in section 6.

2. System environment

The working environment is the multi-resolution virtual tex-
turing system described in [TSH∗07] and [TSH09], based on
the idea of the MIPmap developed by [Cos94] in the global
terrain texture and [TMJ98] with the clipmap to bypass the
texture size limits imposed by the graphics hardware, using
in this case a 3D texture [TSH09]. The levels of detail (LOD)
of the virtual texture are divided in tiles that feed the cached
subset of the whole texture pyramid, i.e. the clipmap. In this
case, the work is focused on vectorial information, so the
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texture tiles are not loaded, but generated by rendering to
texture the contents of a 2D scene graph.

The quality of the texture filtering is specially important
in this case, as thin lines rendered over the terrain are a dif-
ficult test for avoiding aliasing. In close-to-horizontal views,
those thin lines are very noticeably overblurred by trilinear
filtering as they get further from the viewer, so the use of
anisotropic filtering in the texturing engine is critical to the
final image quality. The vectorial information is stored and
managed in a 2D scene graph, that is rendered to texture us-
ing an orthographic camera adjusted to the size and position
of each texture tile and LOD to render. The vectorial con-
tents are organized as layers in the scene graph and rendered
in the user defined order, with no depth test. This is important
when overlapping semitransparent information is rendered,
as the final view is determined by how the layers are sorted.

3. Description of the problem

When 2D lines are draped over the 3D terrain model in a per-
spective view, the vectorial line data rendered in the different
texture levels of detail of the MIPmap pyramid (or clipmap)
must be coherent in its perceived width, to avoid undesir-
able artifacts in the visualization. In a 2D visualization this
is not a problem because the scale is uniform across all the
view, and it is merely a problem of cartographic generaliza-
tion [MS92]. But in a 3D visualization, whether a perspec-
tive or orthographic projection, as the camera is tilted from
a zenithal view towards a horizontal one, different scales or
texture resolutions are used along the screen. Using the same
line width in texels for every texture level will produce dis-
continuities in the perceived line width where texture LODs
change and an incorrect visualization of thinner nearer lines
and thicker further ones (see Figure 1).

Figure 1: Constant line width (5 texels) in texture LOD
space.

This is solved by assigning a fixed line width in world
space (instead of texture level space) that will derive in dif-
ferent widths for each pyramid level. Moreover, the use of
real units, such as meters, is of great help to the operator

at the time of assigning width to the different GIS layers
and objects. Nevertheless, this world space width does not
need to be constant. It can vary as a function of the dis-
tance between camera and terrain, implementing a mecha-
nism similar to cartographic generalization, but extended to
a 3D view to keep the coherence of the perceived line width
between texture LODs. For the rendering of the texture tiles,
the straightforward approach is to render to texture the lines
using the OpenGL line primitive types. At the beginning of
the processing of each pyramid level, the established world
space width is translated to the texture space in this level of
detail, so the line can be correctly rendered.

To reduce the line aliasing in these renders, OpenGL
offers two possibilities: the use of GL_LINE_SMOOTH
mode with alpha blending or the use of multisampling.
The problem with the latter is that the render to tex-
ture is done using a frame buffer object (FBO) with the
texture attached as render target. Even though OpenGL
has defined an extension to use multisampling with FBOs
(EXT_framebuffer_multisample), they are meant
to be used with renderbuffer objects, but no method is pro-
vided for creating multisample texture images. So, the only
practical option provided by OpenGL for antialiasing the
lines rendered to texture is alpha blending.

Using the programming capabilities of graphics hardware,
there are other choices for line antialiasing, such as the one
explored by [CD05], that implements in GPU the algorithm
of [MMJ00]. It is based on a fragment shader, where lines
are filtered using a precomputed array of intensity values.
This allows us to use sophisticated filters without the cor-
responding time penalty, as runtime performance is inde-
pendent of the complexity of the filter. The next problem
imposed by OpenGL implementation in current consumer
graphics hardware is that the line width is limited, clamp-
ing it when the finer levels of detail (that correspond to the
thicker line widths) are used, as shown in Figure 2. As will
be shown later, more than a problem, this clamping is ac-
tually an advantage, specially with line smoothing, because
the thinner lines fade out in a nice way. This kind of restric-
tions, specially in low-end hardware, cannot be overcome,
but there are some possible workarounds that will be ana-
lyzed in this paper. Those solutions are presented next, be-
ginning with the simpler one and progressively solving the
problems that arise. Some solutions are built upon previous
ones in the quest for a final solution that solves the discov-
ered problems with an affordable cost.

4. Proposed solutions

4.1. Solution 1. Discard nearest line segments

The first proposed solution to the problem of line width
clamping because of hardware limits is to discard oversized
line portions (the nearest ones) making them progressively
fade away in the finest texture LODs. It can be thought of
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Figure 2: World space line width (0.5 meters) clamping be-
cause of hardware limits.

as a kind of cartographic generalization, where objects that
are too big for the visualization scale are removed. This triv-
ial solution is efficient because of its simplicity, and works
pretty well for thin lines or those thicker ones that are not too
close to the viewer. Activating the line smoothing with alpha
blending gives a nice fade in the distance for the furthest
lines. However, the disappearing of the nearest (or thicker)
lines is unacceptable for most applications, because the hard-
ware limit for the maximum line width is quite low (spe-
cially in low-end hardware) and that provokes the lines to
disappear too soon. It is this upper limit which makes this
technique unacceptable for a generic method implementable
in all kind of graphic hardware.

4.2. Solution 2. Tessellate the lines into polygons

The second solution, an alternative to the use of OpenGL
line primitives that suffer the width limit, is to tessellate the
lines to convert them to polygon meshes, that can be scaled
to any world space line width, keeping the coherency in the
perceived line width for all the texture LODs. Figure 3 shows
how this coherence is perfectly kept no matter how close the
camera is or how wide the lines are.

This width coherence, that can be clearly seen in the pic-
tures, is much more important in the interactive visualiza-
tion when the camera is in motion. When moving at speeds
that do not allow the texture cache to keep fully updated,
the visual quality of the line primitive based solution is even
more unacceptable because, apart from the loss of width co-
herence, there are width changes in one same view. As the
rasterized texture drops quality or refines it, there are very
noticeable width changes in the image, because each change
in width can be up to twice (or half) the previous one.

The following sections describe different alternatives to
perform this tessellation. Depending on the case we use dif-
ferent methods, combining them all to construct the final ge-
ometry.

Figure 3: Tessellation of the lines into polygon meshes. The
width coherence is kept specially in the nearest segments.

4.2.1. Method 1. Isolated line segments

We begin the description of the tessellation process with the
simplest case, where there is an isolated line segment. In this
case, each vertex of the line is replaced by two new ver-
tices, equidistant to the original vertex at both sides of the
line segment along its perpendicular and with a distance be-
tween them equivalent to the desired line width (see Figure
4). For one line segment, these vertices can be assembled in
different OpenGL primitives, like triangles, quadrilaterals,
polygons, triangle strips or quadrilateral strips.
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Figure 4: Trivial conversion of a line segment to a polygonal
area.

The offset o from the original vertices v1 and v2 is com-
puted as stated in the following equations, using the “perp”
operator given by [Hil94] and considering w as the line
width.

v = v2−v1 = (vxvy)

v⊥ = (−vyvx)

o = wv⊥
2|v⊥|

Then the new vertices are computed applying the offset to
the original vertex in both directions.

v1l = v1 +o ; v1r = v1−o
v2l = v2 +o ; v2r = v2−o
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4.2.2. Method 2. Connected line segments (corner)

The case of a single isolated line is the simplest case. But
lines are more frequently found in the form of sets of con-
nected line segments, usually called polylines or more pre-
cisely, in OpenGL, line strips or line loops, depending on
whether they are open or closed, respectively. These line sets
are more efficient representations, as the vertices are shared
between every two consecutive line segments. The only ver-
tices that are not shared are the first and last ones, in the case
of open polylines. Treating every line segment of the poly-
line independently, as described above, will result in a rather
unpleasant, unconnected final appearance, as shown in Fig-
ure 5.

Figure 5: Unconnected polyline.

For the sake of both efficiency and continuity, only one
vertex should be considered for the connection between two
line segments. The unfolding of this vertex with the previ-
ous algorithm has two choices, one for each line segment,
though neither will offer a satisfactory result. The vertices
of the connection between two line segments must be com-
puted taking into account both segments, and not just one,
as previously described. For a situation like the one depicted
in Figure 6, a fairly good solution is shown. We consider the
lines parallel to each segment at both sides with a distance of
half the desired line width. Those parallel lines enclose the
polygonal area that represent the original line, as in the case
for one isolated line segment. To differentiate and recognize
both sides of the line segment and more concretely those two
parallel lines (and the associated vertices), we have named
one the left line (suffix l) and the other the right line (suffix
r), considering the forward direction to be from v1 to v2.

The intersection of both the left and right line segment
pairs are computed as described in [Bou89], and the re-
sulting intersecting points are used as the vertices for the
tessellation of the lines (v2l and v2r). As the line seg-
ments are connected and their vertices shared, the most effi-
cient OpenGL polygonal primitives to draw them are trian-
gle strips (GL_TRIANGLE_STRIP) or quadrilateral strips
(GL_QUAD_STRIP). The tests run in our implementation
showed that there is no noticeable rendering performance

v1

v3

v2

v2l

v2r

Figure 6: Connection between two line segments.

difference between the use of both primitive types. Actu-
ally, the rendering performance of the triangle or quadri-
lateral strips is quite similar to the lines’, even though the
number of vertices is doubled. The sequence of vertices is
the same for both of them, being the straightforward way of
alternating left and right vertices:

v1l,v1r,v2l,v2r,v3l,v3r, . . .

4.2.3. Method 3. Connected line segments (bevel)

The joint of line segments through the intersection of its
boundary lines, as just described in Method 2, works well
for wide angles, such as in the example of Figure 6. How-
ever, in situations where there is an acute angle between line
segments (Figure 7), the outer lines intersection can be lo-
cated at a far distance from the original vertex. As the an-
gle between segments becomes smaller, the distance to the
intersection point grows towards infinite (representing the
extreme case of parallel lines where there is actually no in-
tersecting point).

v1 v2

v3

v1l

v1r

v'2r v2l

v3r

v3l

v2r
v'2l

v2i

Figure 7: Connection between two line segments joining in
an acute angle.

Because the outer vertices of acute angles are far away
from the original vertices and so severely distort the real
shape of the polyline, we define an angle threshold below
which no outer intersections are computed. Instead, the cor-
ner is beveled, connecting the two outer vertices of the seg-
ments when considered isolated (v2l and v′2l in Figure 9).
The angle threshold chosen is usually close to 90◦, but can
be any other value; its selection follows mainly aesthetic rea-
sons, so there is not a unique valid angle. This tessellation
method proposed for acute angles also works quite well for
obtuse ones, that in this case are equally beveled. However,
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the contrary does not work out, as Method 2 is not adequate
for narrow angles (it produces exaggerated long pikes). For
this reason, although the threshold can be an acute angle, it
should not be much smaller than 90◦.

The use of Method 3 somehow breaks the sequence of
primitives based on vertex pairs, because the outer vertex
(v2o) in this case is actually split into two vertices (v2l and
v′2l in Figure 9). In order to tessellate these vertices there
are several ways of overcoming this problem. The only im-
mutable restriction is to keep the first and last pairs of ver-
tices in the correct order (left-right, subindices l and r) so
they connect perfectly with the adjacent segments.

The first solution (Method 3a) implicates the same com-
putations as in the case of an isolated line segment (described
previously), where v2l and v2r are the vertices corresponding
to the middle vertex v2 for the first segment (v1 to v2), and
v′2l and v′2r the vertices corresponding to that same middle
vertex for the second segment (v2 to v3) (see Figure 7). The
vertices are then tessellated in the following order:

v1l,v1r,v2l,v2r,v′2l,v
′
2r,v3l,v3r, . . .

This solution appears different whether triangle strips
(Figure 8a) or quadrilateral strips (Figure 8b). With the
shown difference in the boundary of the polygonal area,
both cases work perfectly with opaque geometry, but if the
lines are drawn with some transparency level, some parts of
the polygonal area are covered several times, and so appear
denser than others. The overlapping areas are shown in a
darker color in the figure.

Figure 8: Alternatives for the tessellation of two line seg-
ments joining in an acute angle.

Method 3b avoids overlapping areas using a new ver-
tex located in the intersection point between the two inner
boundaries of the line segments, represented as v2i in Figure
7. This inner intersection point can be located on the left or
right side of the line, depending on the turning direction of
the polyline in this joint. If the polyline turns left, the inner
point will be on the left side and if it turns right (as in the ex-
ample of Figure 7), the inner point will be on the right side.
The sequence of vertices for this tessellation is the following
for a right turn:

v1l,v1r,v2l,v2i,v′2l,v2i,v3l,v3r, . . .

In case of a left turn, the vertex sequence will be as fol-
lows:

v1l,v1r,v2i,v2r,v′2i,v2r,v3l,v3r, . . .

These vertex sequences are adequate for both triangle
strips (Figure 8c) and quadrilateral strips (Figure 8d). Ver-
tex v2i is repeated twice to adapt to the tessellation of those
primitives, so the triangle 4-5-6 is degenerated to a line and
the quadrilateral 3-4-5-6 is degenerated to a triangle, because
vertices 4 and 6 are actually the same.

With this tessellation method that uses the inner intersec-
tion v2i, a possible problem may arise when the line width
is high in comparison to its length: the line segment formed
by v1s and v2s and the one formed by v′2s and v3s (being s
the inner side, l or r) may not intersect. In these cases, a pos-
sible solution is to fall back to Method 3a. However, such a
situation of extreme proportions between length and width
of the line segments should not happen, and if it does, it is
more a problem of line simplification, a process previous to
the rendering, that lies beyond the present work.

4.2.4. Combination of the tessellation methods

The different methods described above are combined to con-
struct the final geometry to render the lines. The objective is
to choose in each case the method that achieves the best vi-
sual quality and rendering performance. Tessellation is an it-
erative process executed once per vertex of the original poly-
line. For an open polyline, the first and last vertices are man-
aged by the technique described first for isolated line seg-
ments (Method 1). The remaining vertices, and the first and
last if they are connected, are managed as described in Algo-
rithm 1, combining tessellation methods 2 and 3b. This algo-
rithm assumes that previous vertices are already given in the
correct order (v1l and v1r), and leaves the vertex sequence
in a state that connects correctly with the next iteration. This
next iteration will supply vertices v3l and v3r or a compatible
vertex sequence that tessellates correctly with the primitive
type used (triangle strip or quadrilateral strip). The function
isect implements the algorithm described in [Bou89] that
computes the intersection point between the two line seg-
ments, passed as their two end points.

The algorithm described has been simplified for the
sake of clarity. There are some special situations that must
be tested, especially when two consecutive segments are
collinear or their angle of incidence is below a tolerance
value ε. Otherwise, there will be mathematical precision is-
sues when computing the intersections, that will produce in-
correct results resulting in noticeable visual artifacts.

4.2.5. Final issues about line tessellation

When working with world space line width and lines con-
verted to polygons, there is no need to worry about which
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Algorithm 1 Tessellation of a connected line segments’ joint
s1← v2− v1
o← normalize(−s1.y,s1.x)∗w/2.0
s2← v3− v2
o′← normalize(−s2.y,s2.x)∗w/2.0
ang← angle(−s1,s2)
if ang < threshold then

if turn left then
v2i← isect(v1 +o,v2 +o,v2 +o′,v3 +o′)
newvertices← v2i,v2−o,v2i,v2−o′

else
v2i← isect(v1−o,v2−o,v2−o′,v3−o′)
newvertices← v2 +o,v2i,v2 +o′,v2i

end if
else

nv1← isect(v1 +o,v2 +o,v2 +o′,v3 +o′)
nv2← isect(v1−o,v2−o,v2−o′,v3−o′)
newvertices← nv1,nv2

end if
return newvertices

texture LOD is being rendered to adjust the line width corre-
spondingly. The only modification needed is when the world
space line width is changed, usually to see the 3D view at a
different scale. In this case, the whole scene graph must be
traversed, relocating the vertices in the right place, and then
texture tiles must be regenerated.

The cost of this process varies depending on the tessel-
lation method used. Method 3a works correctly by simply
scaling each pair of vertices considering their middle point
as the scaling center. Method 3b cannot be resolved this way,
so the information of the original lines must be kept to re-
tessellate from it with the new line width in a slower pro-
cess. The computing times of both alternatives are analyzed
later in section 5. Implementation and thorough testing of
the different approaches described above for the tessellation
of lines into polygonal areas has proved that artifacts in near
lines are solved and quality is quite good. The main advan-
tage is that lines can be rendered without width restrictions.
However, the look of these polygonal areas in far distances
is very poor. Figure 9 shows a comparison of the same view
with the same line width using line primitives (left) and poly-
gon primitives (right). In the images we can see that aliasing
is a huge problem in the latter, while the former shows nice
smooth lines.

4.3. Solution 3. Combination of lines and polygons

As described above, neither solution 1 nor solution 2, are
able to completely solve all the problems of line rendering
for the multi-resolution texturing engine. Each solution solve
the problems detected in the other, but none can solve the
whole problem. Reaching this point, the evident approach is
to combine both solutions, that were a priori mutually ex-

clusive, in order to select one or the other depending on the
apparent width of the lines for each texture LOD. The pro-
posed strategy is to compute, at the beginning of the update
phase for each texture LOD, the line width for every GIS
layer containing line primitives.

Algorithm 2 Combination of solutions 1 and 2
for all texture LOD do

for all line set do
compute apparent line width (in texels)
if apparent width < threshold then

select lines version
else

select polygons version
end if
render texture cache tiles

end for
end for

This combination of solution 1 and 2, following Algo-
rithm 2, can be done in two ways, that will be described be-
low. In both cases, the selection of one method or the other
(lines or polygons) is made as a function of the relation of the
apparent line width with a preestablished threshold, so lines
are used for thin line widths and polygons are used for thick
line widths. Based on empirical observations, our choice for
this threshold value is usually between 1 and 2 pixels.

4.3.1. Solution 3a. Combined scene graph

The first way to combine both solutions is to duplicate this
part of the scene graph to keep in memory both versions
(lines and polygons) for each line set. These versions can be
chosen with a switch node, available in most (if not all) scene
graph engines. This solution is expensive in memory usage,
what can make it unfordable in case of huge data sets. The
real memory cost is analyzed in section 5. The advantage of
this solution is that the original line sets are kept in memory
and can be used to regenerate the vertices of the polygonal
version when tessellated with Method 3b, described in sec-
tion 4.2.3 and illustrated in Figure 8 c) and d).

4.3.2. Solution 3b. Solid/wireframe mode

A more economic approach, in terms of memory usage is to
keep in the scene graph only the polygonal version and ac-
tivate the OpenGL line polygon mode (also known as wire-
frame mode), instead of the default fill (solid) polygon mode,
in the situations when the lines are thinner than the preestab-
lished threshold. Even though this solution is much more ef-
ficient in memory usage, and very quick and easy to imple-
ment, it has severe drawbacks.

First, the fact of not keeping the original line sets makes
difficult the interactive change of apparent line width in tes-
sellation method 3b, as described before. Another problem is
about rendering quality. With this approach we are not really
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Figure 9: Comparison between line (left) and polygon (right) primitives for rendering of thin lines.

drawing the original line, but a pair of parallel lines centered
in the original with a very small separation between them.
This can sometimes produce a noticeable change in the per-
ceived line width. Finally, there is a huge overhead for the
render, that will be measured in section 5. The rendering of
polygons in wireframe mode is quite expensive compared to
the solid mode and to the rendering of lines.

4.4. Solution 4. Geometry shader

None of the previous solutions completely satisfied our
needs. Both ways of combining the partial solutions 1 and
2 have important drawbacks, as has been shown. This fourth
and final solution proposed tries to join all the benefits of
previous solutions, moving the process of tessellating the
lines to a geometry shader, keeping in the scene graph stored
in main memory only the original polylines.

4.4.1. Geometry shader based solutions

This fourth proposed solution follows the same behavior de-
scribed in Algorithm 2, drawing the original polylines when
line width is below the given threshold and activating oth-
erwise the geometry shader to tessellate nearest (or thicker)
lines.

The geometry shader accepts the line primitives as its in-
put and outputs the triangle strips, tessellated following the
techniques described in section 4.2. The quadrilateral strips
are no longer an option because this kind of primitive is not
currently supported by the geometry shaders. If the tessel-
lation is computed by the geometry shader, the line strip
primitive cannot be supplied exactly as in the previous ver-
sions, but through the LINE_STRIP_ADJACENCY primi-
tive type. This way, two additional vertices must be added

at the beginning and the end of the line strip. These two ad-
ditional vertices are not drawn when the geometry shader is
not active, so in this case is equivalent to the original line
strip. Each line segment in the polyline is processed by the
geometry shader taking into account the previous and next
vertices in order to correctly tessellate the lines into triangle
strips. So a total of four vertices are the input to the geometry
shader, and the output vertices that will compose the triangle
strip will be between four and six (see Algorithm 1).

This way of processing the polylines is far from optimal
when compared to the previous method of tessellating the
lines in a preprocess in the CPU. Each line segment joint is
processed twice by the geometry shader, once for each of
the adjacent segments. Moreover, the kind of computations
performed for each joint are not very suitable for the GPU,
because there is a considerable number of conditionals to
check whether the angle is obtuse or acute, the segments are
parallel, the segment turns left or right, or exceptional cases
such as divisions by zero in the computation of the lines in-
tersection. These kind of conditional situations break the ef-
ficiency of the of the GPU architecture.

For all these reasons, we propose an alternative in between
doing the computations and tessellate the polylines in the
CPU and doing it in the geometry shader. The tessellation
computations (including every conditional) are performed in
a one-time preprocess step in the CPU, and as the result of
this process the line strip vertices are generated and the offset
vectors for each side of the line in every joint are stored as a
vertex attribute for this line strip. The offsets for each vertex
are 2D vectors so they can be stored in a unique per-vertex
attribute (vec4). This line strip is not exactly the original
one, because in the segment joints tessellated by Method 3b,
two vertices are generated in the same position, to keep the
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ratio of two triangle strip vertices for each line strip vertex.
The position of the two triangle strip vertices are then triv-
ially computed from the position of the line strip vertex by
adding the correspondent offset multiplied by the scale fac-
tor, that depends on the world space line width and the tex-
ture LOD being rendered. The adjacency information is not
needed, as each line strip vertex is autonomous to compute
the triangle strip vertices. The number of vertices output by
the geometry shader in this case is always four.

Following Algorithm 2, the line strip (the original one
with potentially some duplicated vertices) is used in far dis-
tances, activating for the nearest ones the geometry shader
that automatically generates the triangle strip in a very fast
operation because of the extreme simplicity of the compu-
tations. Both strategies to the generation of the tessellated
line were implemented and tested in this work, and the re-
sults are described in section 5. The first approach, receiving
the line strip with adjacency information and computing the
tessellation inside the geometry shader was called solution
4a. The second approach, with precomputed offsets and no
adjacency information was called solution 4b. The main ad-
vantages of solution 4 are the following ones:

• Low memory consumption compared to the previous best
visual quality solution (3a). Only the line strip and offset
information is stored in the scene graph, the triangles are
generated on the fly.
• Coherent line width between line and triangle primitives,

unlike solution 3b, with very little memory overhead
• Free change of line width (the tessellation is computed

every time using the line width passed to the shader as a
uniform parameter). The use of polygonal meshes needed
to recompute its scene graph every time the line width
changed.

One of the drawbacks of this solution is that polyline ge-
ometry must be isolated in the scene graph in order to apply
the geometry shader to it. This geometry separation com-
plicate the most aggressive optimization techniques of the
original system. These optimizations were strongly based
on the hierarchical organization of the scene graph contents
adapted to the tile structure of the texture cache. The geome-
try corresponding to each texture tile were combined in one
unique geometry node (geode) of the scene graph. This in-
crement in the number of nodes of the scene graph causes
a higher memory consumption and increase the overhead of
the scene graph traversals. It is more noticeable as the scene
is more complex. However, this most aggressive optimiza-
tion is not usually chosen because of other reasons. The 2D
vectorial information from GIS is usually structured in lay-
ers of homogeneous nature, which are treated as a group for
means of changing visual attributes like color, transparency
or line width. So the line entities are usually already grouped
together in GIS layers, and applying the geometry shader in
these cases is straightforward.

Another choice that can affect precision is how to store

the vertex offsets. The straightforward way is to store them
as 2D vectors in rectangular coordinates, that will be added
to the central vertex (after the pertinent scaling). But they
can also be stored as polar coordinates, as the magnitude and
the angle of the offset vector. This way the numerical errors
can be reduced in some situations, at the cost of a little bit
of computation in the shader. In both cases, the storage is
equivalent (a vec4 attribute is used).

5. Experimental results

The techniques described in this paper were executed with
three different data sets containing 2D line information on
NVidia GeForce commodity hardware. Test one contains
polygonal data from a cadastral data base. These polygons
were visualized only as its boundary lines for the purposes
of this study, so they are all line loops. The layer contains
about 150000 polygonal features composed by more than
1250000 line segments distributed along the coast line of a
geographical region of about 20000 km2. This data set is a
relatively dense layer with an uneven geographical distribu-
tion. Test two is the hydrology layer of the region, so in this
case there are open polylines corresponding to rivers. The
layer contains about 1220000 line segments and 1240000
vertices distributed along a region of about 45000 km2. Un-
like previous data set, this layer is quite homogeneous in the
line distribution. Test three is the pathway information of a
province, containing mostly open polylines. The layer con-
tains about 11120000 line segments and 14586000 vertices
distributed along a province of about 19500 km2. They are
quite evenly distributed along the covered area. This data set
is meant to be a test to the behavior of the system with a
huge amount of vectorial information. All These vectorial
layers were rendered to a virtual texture of 220× 220 texels
(1 teratexel) with a tile size of 256×256 texels.

5.1. Line width change

The world space line width change is an operation whose
time is negligible when using line primitives (solution 1),
because only the call glLineWidth is needed. It is also
negligible in the fourth solution, the geometry shader based
one, because the line tessellation is performed every frame.
Only the uniform scale variable must be set. The polygon
mesh based solutions (2 and 3) need to reconfigure the 2D
scene graph in order to apply the changes in line width. The
cost of this reconfiguration is dependent on which tessella-
tion method is used. Lines tessellated by methods 1, 2 and 3a
can be easily be reset to a new width just scaling each pair of
vertices using its middle as pivot point, as described above.
This operation takes 1.29 ms for the test 1 data set. In case of
using Method 3b, needed to solve the overlapping artifacts
when rendering semi-transparent lines, the reconfiguration
is performed from the original vertices in a more expensive
operation, that takes about 18 ms for the test 1 data set.
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5.2. Memory usage

The memory consumption of the system is a critical issue, as
the visualization of several complex layers simultaneously
can overflow the available memory of the system. Figure 10
shows a comparison of the memory usage of each solution,
in percentage relative to the best case, represented as 100%.
Figure 11 shows the same comparison applied to the gener-
ation time of the optimized data sets.

Figure 10: Memory usage (KBytes) comparison of each so-
lution with the different test data sets (percentage relative to
the best case).

Figure 11: Generation time (ms) comparison of each solu-
tion with the different test data sets (percentage relative to
the best case).

The optimal solution in terms of memory is the first sim-
plest line based solution 1. The worst one is solution 3a, that
keeps in memory both lines and polygon versions in a dou-
ble scene graph choosing one or the other with a switch. In
between, solutions 2 and 3 double the memory requirements
of line based solution 1, as the number of vertices is doubled
(at least) in the line tessellation process described in previous
sections.

The geometry shader based solution is very dependent on
the fact of using the precomputed offsets (solution 4b) or
performing all the tessellation computations inside the ge-
ometry shader (solution 4a). The first case has an important
memory overhead, because each vertex of the original poly-
line (vec2) is attached the two offsets for the tessellation
(compacted in a vec4). Moreover, some vertices are dupli-
cated because of the tessellation of acute angles as described
in previous solutions. This makes solution 4b very memory
consuming, quite close to the worst solution 3a. The heavy
geometry shader case has a much lesser memory overhead,
but still a little, due to the increase in the number of ver-
tices for two reasons: the vertex duplication of converting
line loops to line strips and the addition of the adjacency
vertices. It is the least memory consuming solution with the
exception of the original lines of solution 1.

5.3. Rendering time

The generation time of the different approaches was mea-
sured as the mean of a complete reconstruction of the texture
cache (clipmap) repeated along 100 frames to avoid devia-
tions due to the impact of external factors such as operating
system activities, accesses to disk, etc. All these measure-
ments showed a pretty stable results, with very little devia-
tions, so the data analyzed in this section can be considered
a fairly accurate estimation of the rendering times.

Figure 12: Rendering times (ms) of the proposed solutions
for the three test data sets (percentage relative to the best
case).

Solutions 3a, 3b, 4a and 4b are really a combination of two
rendering strategies: the proper one of the solution and the
lines for features that appear thin in texture level space. The
performance in these cases will be somewhere between the
two strategies, and the amount of contribution of each one to
the total time will be dependent on many factors such as the
scale of visualization, the level of detail of the texture and of
course the threshold choice for selecting lines or polygons.
For this reason we measured all the rendering strategies in
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isolation as well as combined with lines as described in Al-
gorithm 2. The results of the rendering time measurements
for the three test data sets are illustrated in Figure 12.

The best solutions in terms of rendering performance are
the simplest ones: line based solution 1 and polygon based
solution 2. They are pretty close in the first two data sets, be-
ing a little faster the polygons version with an overhead time
of 4% and 9% respectively. In the third data set the difference
is considerably higher (27% overhead) in favor of the lines
version. The geometry shader solutions 4a and 4b are quite
similar in rendering performance, only the second test data
set showed a clear advantage of the light geometry shader
(solution 4b). It is interesting to see that the huge computa-
tion difference between both geometry shaders is compen-
sated by the transfer and storage of the per-vertex attribute
containing the offsets to the lines vertices.

6. Conclusions

Line rendering for a multi-resolution virtual texturing en-
gine as described in [TSH09] has some practical limitations
that have been analyzed in this paper. Several solutions have
been developed that solve the problems detected. The use
of line based primitives has severe drawbacks due to the
width limit of the hardware/driver implementation, the in-
correct rendering of line continuity and overlapping of semi-
transparent line segments. The tessellation of these lines into
polygons solve the problems found in the first approach. We
have explained a way to tessellate this lines preserving the
line continuity in the different possible cases of line segment
joints. This tessellation methods also take care of the ex-
istence of semitransparent lines to avoid overlaps that will
result in darker zones in line segment joints. The problem
of the polygonal solution is that it causes strong aliasing in
thin lines. Solutions 1 (lines) and 2 (polygons) are not usable
per-se, as they do not offer a good rendering quality in every
level of detail. They are the base for later solutions described
in this work.

Analyzing the whole rendering times, it can be concluded
that in general terms, the heavy geometry shader (solution
4a) is the best option. It offers the best compromise be-
tween rendering performance, memory consumption and vi-
sual quality. The rendering time overhead was between 27%
and 131% for the test data sets, and the memory overhead
was between 5% and 33% for the test data sets of our study.
In the case of the geometry shaders not being supported
in the available graphics hardware (OpenGL ES devices), a
choice must be done between solutions 3a and 3b depending
on where the bottleneck is. Solution 3a will offer a higher
rendering performance while solution 3b uses considerable
less memory.
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