Interactive Rendering of Massive Geometric Models

Enrico Gobbetti
CRS4 Visual Computing

(CRS4 Visual Computing Group)
- Staff
 - 6+ people
- RTD
 - Geometry processing / rendering
 - Scientific visualization
 - Haptics
 - VR & Simulation
- Service
 - Sci Viz + Post production

Interactive Rendering of Massive Geometric Models

Enrico Gobbetti
CRS4 Visual Computing

(CRS4 in one slide)
- Interdisciplinary research center focused on computational sciences
 - No-profit consortium
 - RAS(C21), IBM, STM, UHCA, UniSS, Saras, Tikal
 - Operational since 1992
- RTD staff of ~80 people
- Turnover of ~7M Euro, of which ~50% from external funding
 - EU/National research project
 - Industrial contracts

Goal and Motivation
Accurate interactive inspection of very large models on PC platforms...

Application domains / data sources
- Many important application domains
- Models exceed
 - O(10^5–10^9) samples
 - O(10^10) bytes
- Varying
 - Dimensionality
 - Topology
 - Sampling distribution

Enrico Gobbetti, February 17th, 2005

UniSS, Saras, Tiscali

Dense regular sampling
Accurate interactive inspection of very large models on PC platforms...

Local Terrain Models
2.5D – Path – Dense regular sampling

Planetary terrain models
2.5D – Spherical – Dense regular sampling

Laser scanned models
3D – Naturaltopology – low depth complexity – dense

CAD models
3D – complex topology – high depth complexity – structured

Natural objects / Simulation results
3D – complex topology + high depth complexity + unstructured / high frequency details

Xeon 2.4GHz / 1GB RAM / 70GB SCSI 330 disk / NVIDIA 6800GT

Enrico Gobbetti, February 17th, 2005
Interactive rendering constraints

- Frequency, latency, resolution should match human capabilities.
- ... or at least output device's ones!
- On today's displays
 - Frequency: 10-100Hz
 - Latency: ~0.1s
 - Resolution: O(10^9-10^10) pixels

Tiled high resolution displays
- ~10-100M pixels, tiling

Holographic displays
- ~10-100M pixels, tiling

Why large scale model visualization research? (1/2)

- ... because large scale models are too large for brute force approaches in interactive applications!

Size matters! Or does it? (1/15)

Out-of-core output-sensitive techniques
Goal: Time/Memory Complexity = O(N) (independent of K)

Size matters! Or does it? (2/15)

Out-of-core output-sensitive techniques
Goal: Time/Memory Complexity = O(N) (independent of K)

Size matters! Or does it? (3/15)

Out-of-core output-sensitive techniques
Goal: Time/Memory Complexity = O(N) (independent of K)

Multiresolution + ...
Size matters! Or does it? (4/15)
Out-of-core output-sensitive techniques
Goal: Time/Memory Complexity = O(N) (independent of K)
Multiresolution + View dependent LOD selection + ...

Size matters! Or does it? (5/15)
Out-of-core output-sensitive techniques
Goal: Time/Memory Complexity = O(N) (independent of K)
Multiresolution + View dependent LOD selection + View culling + ...

Size matters! Or does it? (6/15)
Out-of-core output-sensitive techniques
Goal: Time/Memory Complexity = O(N) (independent of K)
Multiresolution + View dependent LOD selection + View culling + Occlusion culling + ...

Size matters! Or does it? (7/15)
Out-of-core output-sensitive techniques
Goal: Time/Memory Complexity = O(N) (independent of K)
Multiresolution + View dependent LOD selection + View culling + Occlusion culling + External memory management

Size matters! Or does it? (8/15)
Out-of-core output-sensitive techniques
• At preprocessing time: build MR hierarchy

Size matters! Or does it? (9/15)
Out-of-core output-sensitive techniques
• At preprocessing time: build MR hierarchy
• At run time: selective view-dependent refinement
 - Stop when node accurate, out-of-view, or occluded
Size matters! Or does it? (10/15)
Out-of-core output-sensitive techniques

- At preprocessing time: build MR hierarchy
- At run time: selective view-dependent refinement
 - Stop when node accurate, out-of-view, or occluded
 - Use dependencies to maintain structure consistent

Size matters! Or does it? (11/15)
Out-of-core output-sensitive techniques

- At preprocessing time: build MR hierarchy
- At run time: selective view-dependent refinement
 - Stop when node accurate, out-of-view, or occluded
 - Use dependencies to maintain structure consistent

Size matters! Or does it? (12/15)
Out-of-core output-sensitive techniques

- At preprocessing time: build MR hierarchy
- At run time: selective view-dependent refinement
 - Stop when node accurate, out-of-view, or occluded
 - Use dependencies to maintain structure consistent
- Keep hierarchy cut in-core, load data on demand
 - Reduce/avoid 1/0 latency by
 - Rendering data
 - Compressing data
 - Predict data misses (prefetching)

Size matters! Or does it? (13/15)
Out-of-core output-sensitive techniques

- Many (many!) data structure/algorithm variations on this theme:
 - Hierarchies/DAGs
 - Evolutionary models
 - Vertex split/edge collapse
 - Vertex insertion/deletion
 - Vertex contraction
 - Octree
 - Adaptive octree
 - Coarser grids
 - Voxel grids
 - Nested models for 2.5D datasets
 - Mimesis models
 - graveyard
 - Granularity = point/triangle/vertex
 - Occlusion culling independent of LOD construction/selection
 - Space partitioning
 - On-line (from page)
 - Off-line (from region)
 - Granularity = cell/region

Size matters! Or does it? (14/15)
Out-of-core view-dependent simplification

- Build point / vertex hierarchy, refine it at run-time
 - ElSana2000, Rus2000, Lin2003,
- CPU bound
 - High per-primitive selection and culling costs
 - Hard to use preferential data paths
 - Hard to build and maintain optimized graphics representations
- Hard to combine with visibility culling methods

Size matters! Or does it? (15/15)
Out-of-core chunk-based techniques

- Partition model into chunks, simplify each chunk independently, build LOD hierarchy
 - Erik2001, Var2002
- GPU friendly
 - Each chunk is an independent mesh
 - LOD selection costs amortized on many primitives
- Hierarchical partitioning useful for visibility culling
- Problems at block boundaries
 - Cracks / costly CPU updates / low simplification quality
Our contributions
GPU-friendly output-sensitive techniques

- Underlying ideas
 - Chunk-based multiresolution structures
 - Seamless combination of surface chunks
- Complex rendering primitives
 - GPU programming features
 - Complex patches, view-dependent variables
- Chunk-based memory management
 - Compression/decompression, block transfers, caching

Our contributions
GPU-friendly output-sensitive techniques

- Adaptive TetraPuzzles
 - High performance visualization of dense 3D meshes
 - Two-level multiresolution model based on volumetric decomposition

Our contributions
Adaptive TetraPuzzles – Dense 3D meshes

Construction

Target = k triangles/chunk
Our contributions
Adaptive Tetrapuzzles – Dense 3D meshes

• Construction

...
Interactive Rendering of Massive Geometric Models

Our contributions
Adaptive Tetrapuzzles – Dense 3D meshes

- Construction

Adaptive Tetrapuzzles – Dense 3D meshes

- Construction

(6 tetra / diamond)
(4 tetra / diamond)
(8 tetra / diamond)

Adaptive Tetrapuzzles – Dense 3D meshes

- Construction

Adaptive Tetrapuzzles – Dense 3D meshes

- Construction
Our contributions
Adaptive Tetrapuzzles – Dense 3D meshes

• Construction

Adaptive Tetrapuzzles – Dense 3D meshes

• Construction

k triangles/chunk

Adaptive Tetrapuzzles – Dense 3D meshes

• Construction

Adaptive Tetrapuzzles – Dense 3D meshes

• Construction

Diamond external boundary
Diamond internal boundary
Child tetrahedra boundary
Our contributions
Adaptive Tetrapuzzles – Dense 3D meshes

- Construction

Diamond external boundary
Diamond internal boundary
Child tetrahedra boundary

Interactive Rendering of Massive Geometric Models
E. Gobbetti, February 17th, 2005

NO CRACKS / NO GLOBALLY LOCKED BOUNDARY!
Our contributions
Adaptive Tetrapuzzles – Dense 3D meshes

- Independent diamond processing
- For each mesh chunk: Simplify + stripify + compress + eval bounds/error
- Out-of-core + parallel
- Out-of-core cull+refine traversal
- GPU cached optimized meshes

SEE PAPER FOR DETAILS

Our contributions
Adaptive Tetrapuzzles – Dense 3D meshes

- Linux/MPI Construction
- OpenGL renderer
- VBO
- Prefetch
- mincore/mmap interface

Our contributions
Adaptive Tetrapuzzles – Dense 3D meshes

- 1-14 Athlon 2200+ CPU, 3 x 70GB ATA 133 Disk (IDE+NFS)
- 3-30K triangles/sec
 - Scales well, limited by slow disk I/O for large meshes
- 96-144 bits/triangle (~lossless)
 - Comparable to other view-dependent simplification methods

Our contributions
Adaptive Tetrapuzzles – Dense 3D meshes

- Xeon 2.4GHz, 70GB SCSI 320 Disk, NVIDIA GeForce FX5800U
- GPU bound
 - ~70M-100M triangles/sec
 - >60Hz when rendering at ± 2px tolerance on a 800x600 window with 4x FSAA
- Resident set size limited to ~150MB

Our contributions
Adaptive Tetrapuzzles – Dense 3D meshes

- Tested on a number of large data sets
 - Bonsai CT / David 2mm / David 1mm / St. Matthew 0.25mm
- Tested in a number of situations
 - Single processor / cluster construction
 - Workstation viewing, large scale display

Interactive Rendering of Massive Geometric Models
E. Gobbetti, February 17th, 2005

Copyright 2005
www.crs4.it/vic/
Our contributions

Adaptive TetraPuzzles – Dense 3D meshes

- **Adaptive TetraPuzzles**: High performance visualization of dense 3D meshes
 - Two-level multiresolution model based on volumetric decomposition

Our contributions

P-BDAM – Planetary terrain models

- **P-BDAM**: High performance planetary terrain visualization technique
 - Handles planet curvature
 - The only accelerated technique with sub-meter global accuracy on entire Earth
 - Parallel construction method

Our contributions

GPU-friendly output-sensitive techniques

- **BDAM - Local Terrain Models**
 - Gobbets/Martin (2005)
 - Cignoni/Giacomelli/Ponsio/Alessandri (2005)

- **P-BDAM - Planetary terrain models**
 - Gobbets/Martin (2005)
 - Cignoni/Giacomelli/Ponsio/Alessandri (2005)

- **Adaptive TetraPuzzles – dense mesh models**
 - Gobbets/Martin (2005)
 - Cignoni/Giacomelli/Ponsio/Alessandri (2005)

- **Layered Point Clouds – dense point clouds**
 - Gobbets/Martin (2005)
 - UMR J2AV / Computer A-Graphs J2AV

- **Far Volumes – General**
 - Gobbets/Martin (2005)
 - [Under review – Stay tuned]
Our contributions

GPU-friendly output-sensitive techniques
- BDAM - Local Terrain Models
 Gobbetti/Marton (CRS4), Cignoni/Garanelli/Porta/Scopigno (ISTI-CNR) 2002
- Far Voxels - General 3D models
 Gobbetti/Marton (CRS4), Cignoni/Garanelli/Porta/Scopigno (ISTI-CNR) 2002

Far Voxels - General 3D models
- Classic multisresolution models
 - Error measures on boundary surfaces
 - Visibility culling decoupled from multisolution
- Hard to apply to models with high detail and complex topology and high depth complexity!

Our contributions

Far Voxels - General 3D models
- Far Voxels: High performance visualization of arbitrary 3D models
 - Mixed model
 - Seamless integration of occlusion culling with out-of-core data management and multiresolution rendering
 - ... work in progress
Our contributions

Far Voxels – General 3D models

- **Off-line Reconstruction**
 - Sampling
 - Raycasting
 - Occlusion culling
 - Sample from distance dictated by maximum possible projected voxel size
- **Fitting**
 - Choose best voxel representation among selected parameterized shaders
 - Error minimization
- **On-line Rendering**
 - Refine until projected voxel size < desired accuracy
 - Exploit GPU for shader evaluation and on-line occlusion culling

Conclusions

- Many high performance models
 - BDAM/P-BDAM: Terrains
 - LPC: Dense point sampled models
 - ATP: Dense triangle meshes
 - FARVOX: General 3D models
- Current/Future work: a lot
 - Generalize mesh-based framework
 - Improve quality of volumetric framework
 - Improved voxel shaders
 - Fragment-based volumetric renderer
 - Introduce (limited) interactive manipulation features
 - Compression + Streaming + Next generation displays

So many things, so little time...

- More info:
 - http://www.crs4.it/vic/
 - http://vcg.isti.cnr.it/
- Models courtesy of Stanford Graphics Group /NASA MOLA / ISTAR / The Boeing Company
- Q&A: Your turn...