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Abstract Although research in image segmentation has

been very active during the last decades, it is still a very

challenging problem. A lot of difficulties may arise related

to, for example, the different image modalities, noise and

artifacts of source images, or the shape and appearance

variability of the structures to segment. Motivated by

problems of image segmentation in the medical field,

we present in this paper a GPU framework based on

explicit discrete deformable models, implemented over the

NVidia CUDA architecture, aimed for the segmentation

of volumetric images. The framework supports the

segmentation in parallel of different volumetric structures

as well as interaction during the segmentation process

and real-time visualization of the intermediate results.

Promising results in terms of accuracy and speed on a real

segmentation experiment have demonstrated the usability

of the system.
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1 Introduction and related work

Medical image segmentation is nowadays at the core of

medical image analysis, is also present in computer vision

applications and attracts the interest of the Computer

Graphics community. Although research has been very

active these last decades, segmentation is still a very

challenging problem. The design of efficient segmentation

methods can expedite tedious parameter tuning and reduce

the limitations of segmentation methods as interactive

control is available [5].
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High-level segmentation approaches, such as deformable

models, were ported to GPU architectures by considering at

first implicit deformable models. Level-sets approaches [4]

became particularly popular in the GPU-segmentation

community as significant speed-ups and interactive

rendering were made available. Geodesic active contours,

which are a combination of traditional active contours

(snakes) [3] and level-sets evolution, were efficiently

implemented in GPU. Nevertheless, little work has

been made in implementing explicit discrete deformable

models in GPU for segmentation purposes. Methods for

implementing active contours based on gradient flow have

been proposed [2], but they were limited to the case of

2D images. On the other hand, many works exploited

physically-based volumetric deformable models in GPU in

other application domains, such as spring mass systems,

cloth simulation, volumetric mesh deformation or Finite

Element Modeling (FEM).

We present in our paper a GPU framework, implemented

using the NVidia’s Compute Unified Device Architecture

(CUDA), aimed for the segmentation of volumetric images

based on discrete physically-based deformable models. The

framework exploits parallelism and performs completely in

the GPU being capable of managing real-time interactive

segmentation of multiple structures.

2 Segmentation approach

Our segmentation approach first defines generic representa-

tions of the anatomical structures to segment and then de-

form them in a fast way to efficiently capture the patient

specific anatomy.

Our segmentation approach is based on physically-based

deformable models [6]. The principle is to consider meshes

vertices as a set of lumped mass particles with position
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and velocity subjected to internal and external forces. The

concepts are hence similar to any deformable models-based

simulation with the particularity that images drive model

deformation for a segmentation purpose. Segmentation

starts from a topologically identical mesh to the final

structure to segment without the necessity of dynamically

create or delete vertices.

Our deformable models are represented as a 2-simplex

meshes [1]. We use internal forces to regulate the

segmentation and external forces to drive it towards

the correct result. Internal forces ensure that the model

evolution is perturbed as less as possible by image artifacts

or possible numerical instabilities. Assumptions are thus

made on the model smoothness and shape. External forces

are based on the minimization of image-based energies.

An image based force is built to attract the vertex towards

the optimal target position with the lowest image energy.

The evolution of the model is based on the resolution

of a discrete differential equations system, which is the

result of the Newtonian law of motion applied to the

particle system. Given the forces and the particle state, the

numerical integration yields a new state of the particle.

Various approaches are available for integration (e.g,

Explicit/Implicit Euler) depending on stability, accuracy

and technical implementation constraints. Our GPU
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Fig. 1 GPU segmentation: In a simulation step, forces are computed

for each particle, whose state is updated in the numerical integra-

tion, before updating the meshes parameters. In parallel and asyn-

chronously, meshes and image data are rendered while user can interact

with the segmentation.

segmentation framework is implemented on top of NVidia

CUDA, the different actions of a simulation step being

depicted in Fig. 1. The framework delivers interactive

performance and real-time rendering, while providing

control to the user. We have designed a simple data access

layer to the simplex-mesh data, encoding meshes vertices

for a parallel processing within the GPU. The volumetric

image information is stored in a raw uncompressed format

by using 3D textures taking advantage of spatial locality

to provide a fast access for read operations. Different

kernels are executed for updating the meshes, computing

the different forces and solving the differential equations

system driving the deformation of the models (Fig. 1).

3 Experimental results

Our framework was evaluated in the segmentation of hip

joint bones from 28 clinical MRI datasets. We compared

the accuracy and speed-up of our GPU-framework against

a state-of-the-art CPU-based implementation of discrete de-

formable models [6]. The GPU approach has a similar accu-

racy and is consistently about 25−70× faster than the CPU

version to execute a single time step. In all cases, the time

taken by a single GPU iteration is perfectly matching with

interactivity constraints. Update frequencies for the GPU are

about 47− 166Hz, thus easily supporting the at least 10Hz

of refresh rates required for interactivity. On the other hand,

the CPU version is unable to fully support interactivity, since

update frequencies are about 0.6− 6.7Hz. Having full sup-

port to interactivity opens the door to a novel segmentation

approach, in which the user is fully able to interact with the

segmentation loop.
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Fig. 2 GPU-based MRI bones segmentation examples: In a), a coarse

mesh is initialized at the beginning of the segmentation, and in b) the

final result is shown with meshes at their higher resolution
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