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OverviewOverview
 Medical images 
 Segmentation issues and taxonomy of 

methods
 Algorithms

 Voxel based: color/feature clustering
 Regionalization
 Contour/surface based

 Locally constrained
 Atlas based

 Global constraints
 Segmentation and registration
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Medical imagesMedical images

 Different modalities acquiring different 
physical values
 Morphological

 CT, MRI, CR, US...
 Functional

 FMRI, PET, SPECT
 Relevant noise
 Artifacts

 e.g. Partial volume, 
Beam Hardening in CT
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Image processingImage processing
 Input: image(s) 
 Output: image(s)
 Algorithms used for

 Noise removal
 Artefacts removal
 Contour enhancement
 Vessel enhancement
 Support for visualization
 Image registration/fusion

From. T. Deschamps

From GE
Healthcare

From 
Osirix 
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SegmentationSegmentation
 Image understanding, vision task
 Input: images
 Output: Reconstruction/interpretation

 Pixel/voxel labelling
 A 2D/3D/4D  “scene” reconstruction
 The “virtual” anatomy we are interested in
 Further information may be obtained

 Functional data (functional imaging, motion)
 Texture classification (diagnostic info)
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Segmentation of medical imageSegmentation of medical imagess
 Usually 3D 4D image stacks spatially 

referenced
 No geometric reconstruction problems as in 

classical computer vision
 Relevant problems:

 Noise (low S/N ratio)
 Poor color - texture characterization: different 

organs may appear similar in medical images
 Typical imaging artefacts
 Validation is mandatory
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Taxonomy of methodsTaxonomy of methods
 Manual, computer assisted

 Drawing interface (intelligent scissors, snakes) 
 Seed placement (region growing, s-t graph 

cut...)
 Parameter tuning

 Completely automatic
 Voxel labelling
 Model registration
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Based on output dataBased on output data
 Voxel labels

 Without spatial relations
 Thresholding, Supervised labeling, clustering 

 Connected components
 Watersheds, Region growing, split and merge, graph 

cut, optimum partitioning 
 Contour/surface representations

 Unstructured
 Edge detection, Isosurfaces (Marching Cubes)

 Structured
 Active contours (topologically constrained)
 Level set, Active Shape models, model fitting, ecc.
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Data structuresData structures

 For Human simulation purposes we need a 
reliable organ representation, i.e. a reliable 
volume partition in meaningful connected 
components

 Then we can easily move from voxelized, 
surface mesh or volume mesh 
representation
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Based on prior informationBased on prior information
 Bottom up

 Pixel voxel based
 Noise removal, feature extraction
 Classification, clustering, region growing...

 Top down
 Use of a priori information on what we are 

looking for
 Model fitting
 Model registration

 Intermediate
 Use of local constraints (neighbourhood, contour-

based...)
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Bottom up/Top downBottom up/Top down
 Critical choice
 Bottom up

 Segmentation only depend on voxel features
 Image information is maximally preserved
 But makes difficult to obtain a virtual organ 

model 
 Top down

 Models should be accurate
 Difficult to capture anomalous shapes

 Hybrid approaches can be used
 A priori hypotheses with increasing strength 

can be exploited
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Common algorithmsCommon algorithms
 Classification/clustering in color/feature space 

(pixel, voxel based)
 Regionalization methods, binary region processing

 Graph based methods 
 Use of  information about pixel/voxel neighborhoods

 Contour/surface based methods 
 Use of (weak) constraints and a priori assumptions 

on regions to be extracted
 Model based approaches

 Use of strong constraints on organ shapes
 “Registration” tecniques  
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A bottom up approachA bottom up approach
 Pixel-Voxel labelling
 Classify voxels according to local features 

(intensity, vector/tensor components, 
edges, etc.

 A priori hypotheses: may be just number of 
cluster, or thresholding values

 Simple thresholding is a particular case
 But more complex/automatic approaches 

are continuously proposed
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Voxel based methodsVoxel based methods
 Supervised learning methods, e.g. 

Bayesian classifiers
 Use of histogram information on a training set

 Unsupervised clustering
 K-means, mean shift...

 Widely used
 Do not provide directly
a regionalization. Post 
Processing required

 e.g. morphological processing,
 Region growing, merging

Plugin for OsiriX: Mean 
Shift Segmentation
Vides Cañas S., Azpíroz 
Leehan J
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Adding constraintsAdding constraints
 Add a regionalization method to clustering 

rules
 e.g. region growing, split and merge, 

watershed transform
 Modify label probability according to local 

neighborhood:
 Markov Random Fields approach

 Graph Theoretic Clustering
 Minimum weight cut, Normalized cuts, S-T cuts
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Graph cutsGraph cuts
 Image as a Graph 

 Voxel as nodes
 Neighbors are connected
 Connections weighted by  similarity

 Find optimal partition in meaningful regions
 Minimizing the weight of the cut
 Normalized to avoid small regions (Shi and 

Malik '00), computationally complex
 Seeded with external nodes (Boykov-

Kolmogorov '01), user dependent
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Contour based approachContour based approach
 Active, Deformable Contour/Surfaces 

Approach
 Define a curve/surface including the interesting 

region
 Make it attracted by the region boundaries

 Add “local” shape constraints 
contour/surface continuity, regularity, etc

 Use only (with exceptions) boundary 
information
 Efficient, problems with initialization/
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Active contours/surfacesActive contours/surfaces
 Two different approaches

 Explicit, parametric
 Define a parametric data structure defining the 

curve/surface (i.e. point chain, surface mesh) and 
define a dynamic depending on local shape and 
image properties

 Topologically constrained, efficient implementation
 Implicit, geometric

 The curve/surface is defined as the zero level of a 
scalar function of higher dimensionality

 Can change topology, complex 
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Evolution of algorithmsEvolution of algorithms

 Snakes (Kass et al. '87)
 Contour attracted by edges, and constrained 

keeping the curve smooth
 Need initialization close to the boundaries
 Tricks to have easier initialization: Balloon models 

(a force inflating the contour, Cohen and Cohen 
91, Gradient Vector Flow, Xu and Prince)

 Tricks to handle topology changes

x(s) x(s+δs)
E=ECE imm=∫0

1∣∂ X∂ s
2∣ds∫0

1∣∂2 X
∂ s2

2∣ds∫0
1 P  I  X ds
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3D extension3D extension
 Need a data structure making easy to 

control local average curvature
 2 - Simplex Meshes (Delingette'94)

 Meshes where nodes are connected with 3 
neigbors

 Easy to compute
average curvature
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ExampleExample

 Growth from a small sphere
 Automatic reparametrization
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Evolution of algorithmsEvolution of algorithms

 Implicit methods: Level sets (Malladi 94, 
Caselles'92)
 Define a contour, define a speed on the 

contour perpendicular to the curve and image 
dependent, the implicit function, and evolve it

 Complex and tricky, but fast approximated 
method 

 Handles naturally topology changes
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Evolution of algorithmsEvolution of algorithms

 Geodesic Active Contours (Caselles '97): 
 A simplified snakes algorithm (with contour 

elasticity) can be implemented in the LS 
framework

 Region driven methods
 Active contours depend only on boundary 

information and not on region homogenity
 Chan-Vese ('99): a LS algorithm depending on 

a region information model
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CommentsComments
 Successful methods
 For model extraction the advantage of having 

topological changes is not relevant: we need 
to extract regions with known topology

 Necessity of handling initialization, force 
definition
 Several parameters to be controlled
 Local constraints are sensitive to noise
 Medical applications often require more 

constraints to the model (top down approach)
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Image information used?Image information used?
 Simple gradient based attraction (low range)
 Add long-distance gradient effects (distance 

maps, gradient vector flow)
 Ad hoc local constraints (i.e. attachments)
 Use of full image content (e.g. Chan Vese 

Approach, not frequent)
 Model based methods (i.e. statistical analysis 

of gray level profiles near boundaries)
 Need to have shape constraints
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CommentsComments
 Can be interpreted as a “registration” 

technique
 Look for a transformation of the boundary surface 

space into the data space
 Solved with an optimization procedure minimizing 

some difference value
 Usually local optimization methods

 We can limit the allowed transform
 Use an organ model as initial contour
 Limit the space transform according to a model 
 Use global optimization
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RegistrationRegistration
 A similarity measure

 Iconic, image based, features
 A parametric transform

 Translation, Rotation
 Scaling, Affine, locally affine,
 Spline, unstructured, example based.

 Solve an optimization problem (find 
transform parameters maximizing similarity)
 Deterministic (e.g. gradient based)
 Stochastic (e.g. Simulate Annealing)
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Constrained deformationConstrained deformation
 Fourier models (Staib and Duncan '92)

 use a truncated series to represent global 
deformation

 Statistical models: Active Shape,  (Cootes & 
Taylor '94)
 Use a Point distribution model  (Principal 

component analysis) generated by a training set 
with corresponding landmark, and constrain 
allowed deformations to first k eigenvectors

 Local gray level information can be added to the 
statistical model (Active Appearance Models '01)
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Segmentation methodSegmentation method
 Compute locally candidate point 

displacements minimizing image 
dependent similarity

 Constrain the global displacement to the 
allowed global components

 Widely applied
 Classical method for Atlas-Based 

Segmentation
 Contour/surface points have an anatomical 

meaning
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ExampleExample
 First 4 eigenvalues of left ventricle 

deformation (Giachetti and Torre, '98)
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Shape constrained tracking Shape constrained tracking 
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Recent 3D/4D examplesRecent 3D/4D examples
 Heart reconstruction from  

MRI
 3D Active Shape Models,

(Van Assen, Frangi et 
al.'06)

 Active Appearance Models 
for Cardiac MRI 
(Stegmann, Pedersen '05)
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ExamplesExamples

 Atlas based liver/pelvic bone 
segmentation (ZIB Berlin)
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CommentsComments

 Atlas based methods using a AS/AA model 
are robust and fast, useful for real time 
tracking, etc.

 Limits
 Need of point correspondence in statistical 

models
 Need of large accurately segmented training 

sets
 Global constraints hardly take into account 

individual peculiarity



353D Anatomical Human project
http://3dah.miralab.unige.ch

Image based/Model basedImage based/Model based
 Which gives the best result?



363D Anatomical Human project
http://3dah.miralab.unige.ch

Image based/Model basedImage based/Model based
 Which gives the best result?
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Image based/Model basedImage based/Model based
 Which gives the best result?
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Image based/Model basedImage based/Model based
 Which gives the best result?
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Atlas based segmentationAtlas based segmentation
 Brain parcellation through 

registration of a manually 
segmented region (e.g. rigid)

 Can segment data without 
explicit use of image 
information

 Registering labeled volume 
with non labeled volume we 
obtain a segmentation not 
using boundary information 
from images
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Mixing different constraintsMixing different constraints

 Creation of complex models using different 
techniques, constraints and a priori 
assumptions on relative position of 
components

 Use of custom image
 forces (statistical
models of gray level
 profiles/texture)
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 Muscle segmentation (Gilles et al., 06)
 Simplex based model
 topological constraints (attachments) 
 radial forces based on medial axis
 collision handling

Mixing different constraintsMixing different constraints
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Task related local constraintsTask related local constraints

 Es. vascular segmentation
 Evolution of a 2D contour in 

3D (Lorigo et al . 2001)

 Use of capillary forces (Yan, 
Kassim '06)
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ValidationValidation
 Segmentation methods should be validated 

in order to be used for a particular task
 Necessity of a truth model and a figure of 

merit
 Different kinds of ground truth data

 Manually segmented organs 
 Use of computational phantoms
 Use of physical phantoms

 Different Figure of Merit to evaluate quality
 Volume based
 Contour distance based
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ValidationValidation
 If user dependent we must also

 Repeatability, intra-operator variability
 If interactive we must evaluate 

 Time requirements
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Figure of meritFigure of merit
 Depends on the application requirements

 Example: symmetrized volume (VS ∩VT) / 
((VS +VT)/2)

 May underestimate local problems (i.e. large 
distance from correct boundaries In selected 
locations)

 Is it a good measure?
 Yes, if the application estimates volumes for 

clinical applications, e.g. ejection fraction
 Not necessarily if we need to capture surface 

anomalies
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Example: aortic reconstructionExample: aortic reconstruction
 AQUATICS Project
 Measurements on phantom
 8 models, scanned at different 

protocols (1-5 mm)
 Models measured independently by 

three different (remote) operators,
 8 models reconstructed independently 

by two operators 
 Patient data
 5 models reconstructed twice for 

control
 40 models created and measured 

independently in the three locations
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Rank testsRank tests

Good results
 low intraobserver variability 

(p<0.0001)
 significant correlation 
between observers (p<0.0001)  

Fig. 1 : Intraobserver variability
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Fig. 2: Intraobserver variability
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Fig. 3: Interobserver variability
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ExampleExample

167172.4 Sac – right iliac angle 
151140.6 Sac – left iliac angle 
167151 Proximal neck angle 
56.666.8 Aortic bif-right iliac length 
45.749.3 Aortic bif-left iliac length 
161168.4 Renal-right iliac length 
153160 Renal-left iliac length 
110122 Renal-aortic bif. length 
48.148 Proximal neck length 
11.611.8 Right common iliac diam 
12.611.5 Left common iliac diam 
20.421.6 Proximal neck diam 
AQUATICSGE AVAMeasurement

 Reconstruction validated through clinical 
parameters evaluation, comparing with 
phantom real measures or other methods 
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CommentsComments

 Validation method and figure of merit 
depend on the task

 For clinical applications a clinical validation 
is required
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ConclusionsConclusions
 Different approaches to medical image 

segmentation (and many equivalent 
formulations)

 Local, image based methods depend largely on 
the choice of ad hoc image forces/potentials

 A key factor to obtain good results is to decide 
how much of image based/a priori information 
to use 
 Methods based on shape constraints and local 

appearance modelling are robust and provide good 
models,  not always suitable for clinical applications
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