
Parallel Rendering
with Equalizer

Prof. Dr. Renato Pajarola

Outline

• Motivation

• Parallel Rendering

• Multipipe System

• Equalizer

Massive Data Visualization

• Processing and rendering requirements
exceeding available computing resources

• Memory

•data size larger than available physical main memory

• CPU/GPU

•bandwidth limited to process data interactively

• Display

•too many elements to see and display

Why is large a problem?

• Moore’s law
+Computing power doubles every 18 months

• improvement of hardware will cope with any
conceivable data sets in foreseeable future

• But…
- Data is generated by same hardware

• same growth can be expected

- Interactivity

1,000

10,000

100,000

1,000,000

10,000,000

100,000,000

1,000,000,000

1970 1975 1980 1985 1990 1995 2000 2005

Intel Sun SPARC Motorola IBM/Motorola HP PA MIPS DEC Alpha

lo
g
a
ri
th

m
ic

 s
c
a
le

CPU Performance (transistor count)

1,000

10,000

100,000

1,000,000

1970 1975 1980 1985 1990 1995 2000 2005

3dfx ATI NVIDIA Matrox

lo
g
a
ri
th

m
ic

 s
c
a
le

GPU Performance (triangles/sec)

1,000

10,000

100,000

1,000,000

10,000,000

100,000,000

1,000,000,000

1970 1975 1980 1985 1990 1995 2000 2005

lo
g
a
ri
th

m
ic

 s
c
a
le

3D Model Sizes (number of vertices)

0

500,000

1,000,000

1,500,000

2,000,000

2,500,000

3,000,000

3,500,000

4,000,000

4,500,000

1970 1975 1980 1985 1990 1995 2000 2005

Intel Apple Other IBM

li
n
e
a
r
 s

c
a
le

 !

Display Resolution (pixels on display)

• Exploit parallel computing and
rendering resources

• parallel cluster computer

• multi-GPU acceleration

• high-speed interconnect

Parallel Hardware

...

Application Environments

• Display Walls

• Virtual Reality

• Remote Rendering

• Parallel Rendering

Display Walls

• Group collaboration

• Better data understanding

• One or more displays per computer

• High resolution: 10-100 MPixels

Virtual Reality

• Stereo rendering, head tracking

• Immersive displays with high frame rates

• CAVEs with up to two computers per
wall with passive stereo

Remote Rendering

• Centralize data, software and hardware

• Combined with scalable rendering

• Avoids copying of HPC result data

• Simplifies administration

Scalable Rendering

• Render massive data sets interactively

• Exploit multiple graphics cards (GPUs)
and processors (CPUs) per display

• Different algorithms for parallelization

Outline

• Motivation

• Parallel Rendering

• Multipipe System

• Equalizer

Rendering Task Decomposition

•Single frame decomposition

• sort-first: screen-space decomposition

• sort-middle: only practical on GPU

• sort-last: database decomposition

•Entire frame decomposition

• DPlex: time-multiplex

• Eye: stereo passes

Rendering Pipeline

1. Transform geometry into screen space

2. Rasterize primitives into fragments

3. Process fragments into pixels

bucketization
(sort)

G G G

F F F

graphics
database

display

sort screen-space
primitives

G G G

F F F

graphics
database

display

sort fragments
(composite)

G G G

F F F

graphics
database

display

geometry
processing

fragment
processing

Sort FirstSort MiddleSort Last

2D/Sort-First

• Scales fillrate/fragment
processing

• Scales geometry with
efficient view frustum
culling

• Parallel overhead due
to primitive overlap
limits scalability

DB/Sort-Last

• Scales all aspects of
rendering pipeline

• Application needs to
be adapted to render
subrange of data

• Recomposition
relatively expensive

Eye/Stereo

• Stereo rendering

• Excellent load
balancing

• Limited by number of
eye views

DPlex/Time-Multiplex

• Good scalability and
load balancing

• Increased latency may
not be acceptable

frame N+2frame N frame N+1

c
h
a
n
n
e
l

b
u
ff
e
r

0
b
u
ff
e
r

1
b
u
ff
e
r

2

Conclusion
2D DB DPlex Eye

Fillrate ++ + ++ ++

Vertex
Processing

0 ++ ++ ++

Memory
Usage

0 ++ 0 0

Load
Balancing

0 + ++ ++

Latency ++ ++ - ++

Re-
assembly

+ - + +

• No ‘magic bullet’

• 2D is ideal for less
than eight pipes

• Use Eye if running
in stereo

• DB scales well

! Combine modes

Equalizer Multilevel Compounds

• Compounds allow any
combination of modes

• Combine different
algorithm to address
and balance bottlenecks

• Example: use DB to fit
data on GPU, then use
2D to scale further

Parallel Compositing

• Compositing cost grows
linearly for DB

• Parallelize compositing

• Flexible configuration

• Constant per-node cost

• Details in EGPGV’07
paper

source1

(destination)
source 2 source 3

http://www.equalizergraphics.com/documents/EGPGV07.html
http://www.equalizergraphics.com/documents/EGPGV07.html

Outline

• Motivation

• Parallel Rendering

• Multipipe System

• Equalizer

Parallel Applications

• Single pipe application

• traditional application and rendering
model

• Multipipe application

• multiple instances of software run on
different nodes and interact

Single Pipe Rendering

• Typical rendering loop

• Stages may not be well
separated

start

clear

draw

swap

exit ?

event handling

initialize

update data

exit

no

yes

stop

Multipipe Rendering

• Equalizer separates
rendering and
application

• Instantiate rendering
multiple times

• Synchronize parallel
execution

yesyes

yes

begin frame

clear

draw

end frame

event handling

exit ?

update data

exit config

stop

start

choose

config

init config

init windows

exit?

start

thread

stop

thread

no
exit?

start

thread

stop

thread

no

swap

(sync)

clear

draw

swap

init windows

no

init data

Runtime Scalability

• Parallel execution of the application’s
rendering code

• One thread per graphics card, one
process per node

• Decomposition of rendering for one
view

Asynchronous Execution

• A rendering thread (channel) can start
rendering the next frame early

• hides imbalance in load distribution

• only visible channels belonging to the
same view are synchronized

• Greatly improves scalability on bigger
clusters

Outline

• Motivation

• Parallel Rendering

• Multipipe System

• Equalizer

Equalizer Concepts

“GLUT for multi-GPU systems and
visualization clusters”

• Task-driven: init, exit, clear, draw,
(readback, assemble)

• Resource-based: Node, Pipe, Window,
Channel

Equalizer API

Parallel rendering applications are written against
a client library which abstracts the interface to
the execution environment

! Library and API

• Minimally invasive programming approach

• Abstracts multi-processing, synchronization and
data transport

• Supports distributed rendering and performs
frame compositing

Resource-based

• Hierarchical resource description:
Node!Pipe!Window!Channel

• Node is a single computer in the cluster

• Pipe is a graphics card and rendering thread

• Window is an OpenGL drawable

• Channel is a viewport within a window

• Resource usage: compound tree

Compound Trees

• Description of resource usage and
parallel task distribution

• easy specification via text configuration
files

Holobench

Config
compound

eye [LEFT RIGHT]

channel "front"
wall { ... }
swapbarrier {}

channel "bottom"
wall { ... }
swapbarrier {}

Channel
name "bottom"
viewport {...}

Window
viewport {...}

Pipe

Node

Channel
name "front"
viewport {...}

C
a
ve

Resource UsageConfigResources

compound
eye [LEFT RIGHT]

channel "left"
wall { ... }
swapbarrier{}

channel "front"
wall { ... }
swapbarrier{}

channel "floor"
wall { ... }
swapbarrier{}

channel "right"
wall { ... }
swapbarrier{}Channel

name "left"
viewport {...}

Window
viewport {...}

Pipe

Node Node

Window
viewport {...}

Pipe

Channel
name "floor"

Window
viewport {...}

Pipe

Channel
name "front"

Channel
name "right"
viewport {...}

Scalability
David 1mm x4

0

0.5

1

1.5

2

2.5

3

3.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16nodes

FPS

linear

2D

DB_ds

225M triangle model

Scalability

5123 voxel model

Skull 512

0

2

4

6

8

10

12

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16nodes

FPS

linear

2D

DB

Open Source

• LGPL license

• Open standard for scalable graphics

• Clusters and shared memory system
supported

• More on www.equalizergraphics.com

http://www.equalizergraphics.com/
http://www.equalizergraphics.com/

