

Caroline Öhman

Pula, 22/06-08

TABLE OF CONTENTS

- Introduction to soft tissues
- Tendon and ligaments
 - Introduction
 - Composition
 - Function and structure
- In vitro testing
 - Stress-strain curves mechanisms
 - Failure modes
 - Visco-elasticity

Anatomica

INTRODUCTION

The human body is composed of many different kinds of soft tissue:

- cartilages;
- epithelial tissues;
- menisci;
- inter-vertebral disks;
- muscles;
- nervous tissues;
- ligaments;
- adipose tissue;
- tendons, etc.

Laboratorio di Tecnologia Medic

Anatomical

INTRODUCTION

Common properties of soft tissues:

- Negligible mineral content => low stiffness
- Large content of water (up to 90%)
- Organic components (collagen, elastin, proteoglycans) always present
- Mainly extra-cellular matrix
- Cellule: fibroblasts and fibrocytes (and derived cells)
- Visco-elastic behaviour is very pronounced
- **BUT**, different functions and structures:
 - support (articular cartilage, menisci);
 - filling (elastic cartilage);
 - storage of resources, thermal protection (adipose tissue);
 - protection, absorption, diffusion (epithelial tissues);
 - mechanical connection (ligaments, tendons and muscles).

INTRODUCTION

Common properties of soft tissues:

- Negligible mineral content => low stiffness
- Large content of water (up to 90%)
- Organic components (collagen, elastin, proteoglycans) always present
- Mainly extra-cellular matrix
- Cellule: fibroblasts and fibrocytes (and derived cells)
- Visco-elastic behaviour is very pronounced
- **BUT**, different structures and functions :
 - support (articular cartilage, menisci);
 - filling (elastic cartilage);
 - storage of resources, thermal protection (adipose tissue);
 - protection, absorption, diffusion (epithelial tissues);
 - mechanical connection (ligaments, tendons and muscles).

Soft tissues that will <u>not</u> be dealt with in this lesson:

MUSCLE TISSUES

- Mechanical properties as defined so far are passive properties (elastic, plastic, visco-elastic)
- Mechanical response of muscles predominantly depends on their active function
- Difficult extract and conserve muscle tissue without degenerating its properties
- Muscles are not isolated bodies, there may be an interaction with one or several contiguous muscles

FUNCTION AND ANATOMY OF TENDONS

Each muscle has one, both or none extremity connected to a tendon

Long and with a quite constant section, different possible cross sections:

- Rounded cylindrical
- Flattened
- Severely loaded muscles (e.g. quadriceps) have short and thick tendons
- Muscles performing precise motion with light loads (e.g. flexors and extensors of hand have long, slender tendons

Biomechanical functions:

- Avoid excessive muscle length
- Localize muscles in areas where they do not interfere (e.g. hand)
- Absorb shocks and minimize impulsive load on muscles

Anatomica

3D Anatomical Human project http://3dah.miralab.unige.ch

COMPOSITION OF TENDONS

Composite material

1=> Reinforcement:

- Bundles of collagen fibres (50-80% volume => yellow)
- Aligned with load (along tendon)
- Optimised for axial loading
- Little resistance to transverse loads

2=> Matrix:

- Proteoglycans (2-10%)
- Elastin (2-5%)
- Supports fibres and shares load between fibres
- Ties fibres together

3=> Cellule:

- Tenoblasts: (similar to fibroblasts) build the matrix
- Tenocytes: derive from tenoblasts, inside tissue

4=> Nerves, blood vessels, lymphatic

FUNCTION AND STRUCTURE OF TENDONS

Most of load directly transmitted by collagen fibers

Fibers progressively stretched and recruited

http://3dah.miralab.unige.ch

Anatomica

LIGAMENTS AND TENDONS: COMPOSITION

Tendons and ligaments have similar composition:

• Mainly made of collagen

Component	Ligament	Tendon
Collagen (mostly as type I)	70-80	75-85 (MPa
Elastin	10-15	<3
Proteoglycans	1-3	1-2

Different arrangement of the fibers

Anatomica 둘30

FUNCTION AND STRUCTURE OF LIGAMENTS

Similar composition to tendons

Different arrangement of collagen fibers:

- More wavy
- Arranged in layers

Initially compliant, then stiffening

3D Anatomical Human project <u>http://3dah.miralab.unige.ch</u>

BONE INSERTIONS OF TENDONS & LIGAMENTS

Anatomical B 3D H

Collagen fibers (of both ligaments & tendons) extend below bone surface:

This fibrocartilage extends inside bone:

- In some cases transition to calcified tissue is sharp
- In other cases a gradient of mineralization is found along the collagen fibres:
 - Gradient of mechanical properties (stiffness increase with %mineral)
 - Transition minimizes stress concentration due to discontinuity

MUSCLE INSERTION OF TENDONS

Collagen fibres of tendon extend across the insertion into the muscle

Mechanical strength:

- Stress concentration is reduced
- Interface for transmission of force is one order of magnitude larger than cross section of tendon

Different specimen geometries can be tested:

- whole complex (bone-tendon-muscle or bone-ligament-bone)
- single tendon or ligament
- single fascicles

Problems with not whole complex:

- Difficult to cut a specimen without damaging material texture
- Excised specimens difficult to clamp without causing stress concentrations (cutting failure)

Anatomica

Considering ligaments/tendons with surrounding structures:

3D Anatomical Human project http://3dah.miralab.unige.ch

DEFINING AND MEASURING DIMENSIONS

Cross section needed to compute stress:

- Area & geometry of cross section are not constant along ligaments
- Difficult to assure precise measurements

Length needed to compute strain:

- Pre-tensioning of fibres are lost during dissection
- Preferable to measure deformation on the central portion

Under physiological stress:

- Tendons:
 - Transmit muscle loads
 - Minimal dissipation required for cyclic loads (e.g. walking)
- Ligaments:
 - Must be very compliant in physiological range (must not hinder motion) => no muscle work
 - Must become stiff if joint is close to dislocation

Anatomica

3D Anatomical Human project *http://3dah.miralab.unige.ch*

DIRECTION DEPENDENT

Longitudinal-transverse testing

Medial collateral ligament

Tendons and ligaments have an anisotropic structure:

- work almost only in tension
- along axis of ligament/tendon

0-A) First part has increasing slope (stiffening):

- Uncoiling and straightening collagen fibers
- Shear motion of the hydrophilic gel surrounding collagen fibres
- Tendons: up to 1.5-4% stretch
 - Muscle pre-tension sufficient to exceed this part to avoid slack
- Ligaments: stress <3MPa
 - No relevant muscle work

A-B) Almost-linear response for increasing stress

- Complete straightening of collagen fibers
- At the end of this region: small drop of stress: first collagen fibers get damaged
- Tendons: the region tendons are cycling during physiological activity
 - Linear, highly reversible: elastic energy accumulated is released when unloading
- Ligaments: the normal field of action for constraining motion in normal tasks
 - Ligament response becomes stiffer (=quicker) to avoid dislocation

B-C) Progressive damage, up to failure

- This stress level is reached only in trauma conditions
- Tendons: stress = 50-120 MPa (10-15% strain)
- Ligaments: similar stress; larger strain, up to 70%
- In physiological conditions applied stress never exceed 1/3 1/4 of failure stress

DAMAGE & FAILURE

1 Reversible strain (physiological loading):

- Fibers progressively stretched and recruited
- Slope is increasing
- Tends to become linear

2 First fibers fail:

- First damage when curve still linear
- Load fluctuates
- 3 Peak load: most fibers stretched & ready to fail
- 4 Residual strength after damage:
 - Ligament length is irreversibly increased (joint is loose)

POSTERIOR CRUCIATE LIGAMENT

3D Anatomical Human project *http://3dah.miralab.unige.ch*

VISCO-ELASTICITY

Anatomical ummy

Both ligaments and tendons show visco-elastic behavior:

• Much more pronounced in ligaments (dissipative) than tendons (almost-reversible)

Visco-elastic tests:

- Hysteresis
- Asymptotic relaxation

(I) pool (I) pool (I) pool (I) pool (I) pool (I) F_0 F_A (I) $X = X_0$ (I) Time (1)

Figure 7.3:5 The load-elongation and relaxation curves of an anterior cruciate ligament specimen. In (A), the specimen was loaded to about one-third of its failure load and then unloaded at the same constant speed. In (B), the specimen was stretched at constant speed until the load reached F_0 ; then the stretching was stopped and the length was held constant. The load then relaxed. From Viidik (1973)

VISCO-ELASTICITY

Conditioning for cyclic loading:

- Drifting of stress-strain curves for the first 10-100 cycles
- Then stabilizing

Figure 7.3:6 Preconditioning of an anterior cruciate ligament. The load-elongation an relaxation curves of the first three cycles are shown. From Viidik (1973)

3D Anatomical Human project http://3dah.miralab.unige.ch

Anatomica

VISCO-ELASTICITY

26

Strain rate affects:

- Slope of stress-strain curve (apparent stiffness)
- Failure load

TENDONS & LIGAMENTS : CHANGES WITH AGE

Rapid change of mechanical properties adolescent/adult

Bone insertions are weaker initially (adolescent), then exceed the strength of ligament/tendon bulk part.

Failure mode tends to shift:

- Avulsion of insertion site (adolescent)
- Failure of mid-portion (adult)

Age of Animals

TENDONS & LIGAMENTS : CHANGES WITH AGE

Anatomical He 3D

Progressive change of mechanical properties with ageing in adult

- Size of collagen fibrils increase with age
- Stiffness and ultimate load decrease with age

3D Anatomical Human project http://3dah.miralab.unige.ch

TENDONS & LIGAMENTS : ADAPTATION TO MECHANICAL STRESS

Like all tissues:

- Increased material properties and cross-section in case of increased stress
- Decreased in case of immobilization
- Rapid resorption process (weeks-months)
- Healing and recovery slower
 - faster for ligament/tendon tissue, slower for bone insertion

3D Anatomical Human project *http://3dah.miralab.unige.ch* Anatomica

Thank You

3D Anatomical Human project <u>http://3dah.miralab.unige.ch</u>

30