Motion Control Methods for Skeleton

Daniel Thalmann

Cagliari, May 2008

Animation of articulated bodies

Anatomical Re 30

- Characters, humans, animals, robots.
- Characterized by hierarchical structure: skeleton.
- Skeleton: set of interconnected segments corresponding to members and joints.
- Joint: intersection of two segments.
- Angle between two segments: joint angle.
- Animation: joint can have up to 3 joint angles: flexion, pivot, twisting.

3D Anatomical Human project <u>http://3dah.miralab.unige.ch</u>

Skeletal Animation

Skeletal motion is function of time

 $\theta = f(t)$

Anatomica

Representing this function

3D Anatomical Human project http://3dah.miralab.unige.ch

Complex Joints

- 3 DOF joints
 - Gimbal
 - Spherical (doesn't possess singularity)
- 2 DOF joints
 Universal

3D Anatomical Human project <u>http://3dah.miralab.unige.ch</u>

Resulting DoF

- 2 prismatic joints: 2 DoF
- GH-joint: 3 DoF

Example: Joints in the Shoulder Complex

- SC-joint: 3 DoF
- AC-joint: 3 DoF
- ST-"joint": 4 DoF
- GH-joint: 3 DoF
- SC + AC + ST: closed kinematic chain
 - 4 DoF between Thorax and Glenoid
 - 2 translations
 - 2 rotations
 - Governed by GH

Hierarchy Representation

Anatomical Balling and Anatomical

- Model bodies (links) as nodes of tree
- All body frames local (relative to parent)
 - Transformations
 affecting any node
 affect all its children
 - H-ANIM

3D Anatomical Human project <u>http://3dah.miralab.unige.ch</u>

Overview

Kinematics

- Consider only motion
- Determined by positions, velocities, accelerations

Dynamics

- Consider underlying forces
- Compute motion from initial conditions and physics

Motion capture animation

- Measures and records action performed by actor for immediate or delayed replication.
- E.g. optical: small reflective captors (markers), attached to body of real actor
- From markers position: calculate joint angles
- Body shape vs skeleton

3D Anatomical Human project <u>http://3dah.miralab.unige.ch</u>

Direct and Inverse Kinematics

Direct Kinematics

- Specify joint angles
- Compute positions of end-effectors

Inverse Kinematics

- "Goal-directed" motion
- Specify goal positions of end effectors
- Compute joint angles required to achieve goals

Direct Kinematics

- Case study: 2 links connected by rotational joints:
- Input: joint angles θ_1 , θ_2 Output: position of end-effector X

More general case: use of Denavit-Hartenberg Matrices

 $A_{k} = R_{z\theta} T_{zd} T_{xl} R_{x\alpha}$ $W_{6} = A_{1} A_{2} A_{3} A_{4} A_{5} A_{6}$

3D Anatomical Human project http://3dah.miralab.unige.ch

Joint motions can be specified by spline curves
 => parametric keyframe animation

3D Anatomical Human project http://3dah.miralab.unige.ch

The problem of inverse kinematics

- User specifies end-effector positions: X
- Computer finds joint angles: θ_1 , θ_2

Anatomical

End-Effector Positions can be specified by Spline Curves

3D Anatomical Human project http://3dah.miralab.unige.ch

- Problem for more complex structures.
 - System of equations usually under-defined
 - Multiple solutions.
 - Find best solution (e.g., minimize energy in motion)
 - Non-linear optimization

3D Anatomical Human project http://3dah.miralab.unige.ch

Iterative IK Solutions

- Frequently analytic solution infeasible
- Use Jacobian
- Derivative of function output relative to each of its inputs

Anatomica

If y function of 3 inputs and one output

$$y = f(x_1, x_2, x_3)$$

$$\delta y = \frac{\delta f}{\partial x_1} \cdot \delta x_1 + \frac{\delta f}{\partial x_2} \cdot \delta x_2 + \frac{\delta f}{\partial x_3} \cdot \delta x_3$$

• Relates velocities in parameter space to velocities of outputs $Y = J(X) \cdot X^{2}$

Invert Jacobian and solve for x^k

Inverse Kinematics

Numerical Solution

- Start in some initial configuration
- Define error metric (e.g. goal pos current pos)
- Compute Jacobian of error w.r.t. inputs
- Apply Newton's method (or other procedure)
- Iterate...

Anatomical

Inverse Kinematics (two segment arm)

$$\frac{\partial p_{2}}{\partial t_{1}} = -l_{1}\sin(\theta_{1}) - l_{2}\sin(\theta_{1} + \theta_{2})$$

$$\frac{\partial p_{2}}{\partial \theta_{1}} = -l_{1}\cos(\theta_{1}) + l_{2}\cos(\theta_{1} + \theta_{2})$$

$$\frac{\partial p_{2}}{\partial \theta_{2}} = -l_{2}\sin(\theta_{1} + \theta_{2})$$

$$\frac{\partial p_{2}}{\partial \theta_{2}} = -l_{2}\sin(\theta_{1} + \theta_{2})$$

$$\frac{\partial p_{2}}{\partial \theta_{2}} = +l_{2}\cos(\theta_{1} + \theta_{2})$$

Anatomical

Inverse Kinematics

Inverse Kinematics

Anatomical Wing 3D

Problems

- Jacobian may (will!) not always be invertible
 - Use pseudo inverse (SVD)
 - Robust iterative method
- Jacobian not constant

$$J = \begin{bmatrix} \frac{\partial p_z}{\partial \theta_1} & \frac{\partial p_z}{\partial \theta_2} \\ \frac{\partial p_x}{\partial \theta_1} & \frac{\partial p_x}{\partial \theta_2} \end{bmatrix} = J(\theta)$$

 Nonlinear optimization, but problem (mostly) well behaved

Inverse Kinetics

- Better, because take into account balance
- With it, character cannot bend forward too much as with inverse kinematics

R.Boulic, R.Mas, D. Thalmann, Complex Character Positioning Based on a Compatible Flow Model of Multiple Supports, *IEEE Transactions in Visualization and Computer Graphics*, Vol.3, No3, 1997, pp.245-261

3D Anatomical Human project http://3dah.miralab.unige.ch

Dynamics

Use forces, torques, constraints and mass properties of objects

3D Anatomical Human project http://3dah.miralab.unige.ch

Various Dynamic Formulations

Newton-Euler formulation

- 1. Equations: angular / linear velocities /accelerations of each segment
- 2. Equations : forces / torques exerted on successive segments.
- 3. Newton equation : F= m a Euler equation: N = J α + ω x (J. ω)

Lagrange formulation

- Kinematic/potential energies in terms of matrices & derivatives
- Unfortunately, CPU time expensive: O(n⁴)
- Hollerbach: recursive method, Armstrong et al. almost real-time

D'Alembert principle of virtual works:

- if system in dynamic equilibrium and small movements
- ⇒ sum of work of forces applied & internal = work caused by change
- Gibbs–Appel formulation
 - Large matrices, CPU cost (O(n4))

Anatomical

- For dynamic simulation, volume of human body should be modelled
- Approximation of body by 15 solid rigid primitives; cylinders, spheres, ellipsoids and troncated cones.
- Mass of each volume derived from biomechanical experiments
- coordinate system for each solid with origin at hinge.

	Name	Туре	Mass (Segment / Total)
	head and neck	ellipsoid	0.081
	up_torso	cylinder	0.216
	down_torso	cylinder	0.281
	r_hand	sphere	0.006
	l_hand	sphere	0.006
	r_upper_arm	frustum	0.028
	1_upper_arm	frustum	0.028
	r_forearm	frustum	0.016
	1_forearm	frustum	0.016
	r_thigh	frustum	0.100
	1_thigh	frustum	0.100
	r_leg	frustum	0.0465
$14 \mathcal{P} \mathcal{P} 15$	1_leg	frustum	0.0465
	r_foot	frustum	0.0145
	1 foot	frustum	0.0145

1

Major problem in control of movement

- Obtain value of torque produced by muscle at given joint to carry out desired movement.
- Use formulation of inverse dynamics based on equation of Newton-Euler to obtain values of force and torque (variables over time) for simulation in direct dynamics.

3D Anatomical Human project <u>http://3dah.miralab.unige.ch</u>

dynamics. $\Delta t': time step for direct dynamics.$

notion control

with direct dynamics

Expected movement:

 Δt : time step for inverse

Motion control system

Use of inverse dynamics jointly

represented by joint variables

dynamics

3D Anatomical Human project http://3dah.miralab.unige.ch

desired motion joint varibles t =t+time_step Inverse Dynamics joint force and torque Direct Dynamics t =t+small time step acceleration and velocity update structure Display and No Record t = interval time ? Ves No t = ending time ?Yes stop

Control with inverse dynamics

Anatomical

Animator Specifies Constraints

- What the character's physical structure is
 - e.g., articulated figure
- What the character has to do
 - e.g., jump from here to there within time *t*
- What other physical structures are present
 - e.g., floor to push off and land
- How the motion should be performed
 - e.g., minimize energy

- Computer Finds "Best" Physical Motion
 - Satisfying constraints

Example: Particle with Jet Propulsion

- x(t) is position of particle at time t
- f(t) is force of jet propulsion at time t
- Particle's equation of motion is:

mx'' - f - mg = 0

Suppose we want to move from *a* to *b* within t₀ to t₁
 with minimum jet fuel:

Minimize $\int_{t_0}^{t_1} |f(t)|^2 dt$ subject to $x(t_0) = a$ and $x(t_1) = b$

Anatomical

Discretize Time Steps

3D Anatomical Human project <u>http://3dah.miralab.unige.ch</u> Anatomical

Advantages

- Free animator from having to specify details of physically realistic motion with spline curves
- Easy to vary motions due to new parameters and/or new constraints

Challenges

- Specifying constraints and objective functions
- Avoiding local minima during optimization

Motion graphs

- Roadmap of motion data for human
 - Edges: clips of motion, some from original motion capture, some generated as transitions
 - Vertices: 2 sets of motion clips where motions from one set can flow seamlessly into motions from the other

Building motion graphs

- Identify transition candidates
- Select transition points
- Eliminate problematic edges

A simple motion graph

Identify transition candidates

- For each frame A, calculate distance to each other frame B by basically measuring volume displacement
- Use weighted point cloud formed over window of k frames ahead of A and behind B, ideally from body mesh
- Calculate minimal weighted sum of squared distances between corresponding points, given that rigid 2D transformation may be applied to second point cloud

$$\min_{\theta, x_0, z_0} \sum_i w_i \|\mathbf{p_i} - \mathbf{T}_{\theta, x_0, z_0} \mathbf{p'_i}\|^2$$

Anatomical

3D Anatomical Human project <u>http://3dah.miralab.unige.ch</u>

Select transition points

- Previous step gave us all local minima of distance function for each pair of points
- Now define threshold and cut transition candidates with errors above it
- May be done with or without intervention
- Threshold level depends on type of motion eg. walking vs. ballet

3D Anatomical Human project <u>http://3dah.miralab.unige.ch</u>

Create transitions

For each pair of frames A_i and B_j which fell under distance error threshold, blend A_i-A_{i+k-1} with B_j-B_{j-k+1}

Anatomical

- Align frames with appropriate rigid 2D transformation
- Use linear interpolation to blend root positions

$$R_p = \alpha(p)R_{\mathscr{A}_{i+p}} + [1 - \alpha(p)]R_{\mathscr{B}_{j-k+1+p}}$$

• Use spherical linear interpolation to blend joint rotations

$$q_p^i = slerp(q_{\mathscr{A}_{i+p}}^i, q_{\mathscr{B}_{j-k+1+p}}^i, \alpha(p))$$

Blend function:

$$\alpha(p) = 2(\frac{p+1}{k})^3 - 3(\frac{p+1}{k})^2 + 1, \ -1$$

3D Anatomical Human project <u>http://3dah.miralab.unige.ch</u>

Eliminate problematic edges

- We want to get rid of:
 - Dead ends not part of a cycle
 - Sinks part of one or more cycles but only able to reach small fraction of nodes
 - Logical discontinuities eg. boxing motion forced to transition into ballet motion
- Goal: to be able to generate arbitrarily long streams of motion of same type

3D Anatomical Human project http://3dah.miralab.unige.ch

Using motion graphs

- We have: database of motion segments and mappings between them
- We want: motion streams conform to user specifications
- Search problem, where user specifies non-negative scalar error function g(w,e) and halting condition
- Total error of path w:

$$f(w) = f([e_1, \dots, e_n]) = \sum_{i=1}^n g([e_1, \dots, e_{i-1}], e_i)$$

Searching

- Goal: find complete graph walk that minimizes f(w)
- Use branch and bound keep track of best complete graph walk wopt and cut current branch when error exceeds f(wopt)
- Use greedy ordering heuristic for set of unexplored child nodes, select one that minimizes g(w,c)
- Even with branch & bound and ordering heuristic, search still exponential
- Trade some optimality for speed by searching incrementally

Motion Modeling: Creation of PCA space

 PCA technique transforms set of variables into smaller set of its linear combination, with most of variance of original dataset.

$$\theta \approx \theta_0 + \sum_{i=1}^m \alpha_i e_i = \theta_0 + \alpha \mathbf{E}^T$$

Anatomical

3D Anatomical Human project <u>http://3dah.miralab.unige.ch</u>

Motion Modeling: Time Warping

- Space leg length
- Time original duration
 - Frequency function F(param)
 - Phase φ

$$\varphi_{i+1} = \varphi_i + \Delta \varphi = \varphi_i + \frac{\Delta t}{MotionUnit Duration}$$

 $= \varphi_i + \Delta t \cdot F(param)$

Anatomical

3D Anatomical Human project http://3dah.miralab.unige.ch

Adaptive Motion Control

Anatomical B 3D

- Automatic on-line motion transition
 - Locomotion / Jump
 - Time and duration
 - Dynamic coherence

P. Glardon, R. Boulic and D. Thalmann, Robust on-line adaptive footplant detection and enforcement for locomotion, *Visual Computer*, Vol. 22, Nr. 3, pp. 194-209, 2006.

3D Anatomical Human project http://3dah.miralab.unige.ch

 Combining PCAs, warping, and Prioritorized Inverse Kinematics

S. Carvalho, R. Boulic, D. Thalmann, <u>Interactive Low-Dimensional Human Motion Synthesis</u> by Combining Motion Models and PIK, *Computer Animation & Virtual Worlds*, Vol. 18, 2007.

Conclusion

- Anatomical Balling and Anatomical
- Motion Control still strongly relies on Motion Capture
- Weak situation compared to shape modeling or rendering
- Can we get rid of Motion Capture ?

3D Anatomical Human project http://3dah.miralab.unige.ch