3D Anatomical Human Summer School – Cagliari, May 21-23th 2008

Movement analysis with stereophotogrammetry: anatomical landmarks calibration

Ugo Della Croce, Ph.D.

Biomedical Sciences Department, University of Sassari, ITALY

Motion Analysis Lab, Spaulding Rehabilitation Hospital, PM&R Department, Harvard Medical School, Boston, USA

Motion Analysis Lab, PM&R Department, University of Virginia, Charlottesville, Va, USA

the geometry of the Euclidean 3-dimensional space

as a function of time

looking at the space around us and describe it with numbers

to be able to reproduce it exactly as it was when observed, even if it may have changed meanwhile

this is the complicated reality we want to frame into a numerical structure

t = t

let's focus on a single bone

a body may be thought of as made of particles

we represent a particle using the dimensionless geometric entity (model) point

point which lies on a known plane

described with numbers

$$\boldsymbol{v} = \begin{vmatrix} v_x & v_y \end{vmatrix}$$

$$\begin{cases} v_x = v \cos \phi \\ v_y = v \sin \phi \end{cases}$$

$$v = \sqrt{\left(v_x^2 + v_y^2\right)}$$

what happens if we change perspective?

The numerical description of the position of P changes Can we set a relationship between v and v?

change of perspective by simply sliding (translating) the cross-wire

rule for coordinate transformation

general change of perspective

change of perspective in two steps: translate and rotate it the cross-wire

a point in the three-dimensional space

change of perspective in the three-dimensional space

we are using stereophotogrammetry

markers over a body segment

markers over a body segment:

✓ visible to the cameras
 ✓ fast, easy and safe mounting
 ✓ minimal disturbance to the subject
 ✓ applicability over prostheses, orthoses
 ✓ spread in space

✓ points related to the anatomy
✓ joint axes location
✓ inertia properties (CoM, axes of inertia)

Bone-embedded Frames

Bone-embedded Technical Frame (BTF)

Bone-embedded Frames

Bone-embedded Frames

Bone-embedded Technical Frame Anatomical Landmarks

Bone-embedded Frames

Bone-embedded Technical Frame Bone-embedded Anatomical Frame (BAF)

Bone-embedded Frames

anatomical landmark calibration

now the scene is in motion

in every instant of time

we use two systems of axes

movement reconstruction

position and orientation of the moving BF relative to the global frame

in each sampled instant of time:

locate the BF relative to the global set of axes and locate the body points in the BF in the global set of axes

movement reconstruction

sources of errors

1) instrumental errors

(apparent marker movement) \mathbf{P}_1 \mathbf{P}_2

 $O_X(t)$

Della Croce et al., Med. & Biol. Eng. & Comp., 2000

compensation of instrumental errors

increase the number of cameras

improve camera location

good marker maintenance

2) skin movement artifacts

(actual marker movement)

skin markers

how to measure skin movement artifacts

Fluoroscopy, GT, LE, HF, LM voluntary flexion 6 frames/sec

Angeloni et al., ESB 1992 3D Anatomical Human Summer School – Cagliari, May 21-23th 2008

34

how to measure skin movement artifacts

- 60° flexion => 5.0° Ab/Ad and 9.4° Int/Ext
- 60°flexion => 3.4°Ab/Ad and 10.6°Int/Ext

Lafortune and Cavanagh, Journal of Biomechanics 1992

Ishii et al., ClinOrtRelRes 1997

percutaneous_pins vs 11diff.arrays, tib/fib, 7 subj, gait Manal et al., GaitPost 2000

the challenge

rigid body model calibration

fitting the rigid body model calibration to the markers in each sampled instant of time

anatomical landmark calibration

w_i anatomical landmark position vectors

3) anatomical landmark mislocation

palpable anatomical landmarks precision

[mm]	landmark	INTRA-OPERATOR	INTER-OPERATOR
		r	r
PELVIS	ASIS	12	15
	PSIS	13	25
FEMUR	GT	(18)	18
	ME	10	15
	LE	10	19
TIBIA and	TT	5	12
FIBULA	HF	6	12
	MM	7	15
	LM	9	17
FOOT	СА	10	16
	FM	8	22

Della Croce et al., Medical & Biol. Eng. & Comp., 1999

Identification of the hip joint center location

		Δχ			∆y			Δz	
METHOD	Func.	Bell	Davis	Func.	Bell	Davis	Func.	Bell	Davis
MEAN [mm]	4	-7	-12	3	-19	8	-2	5	17
SD [mm]	6	6	17	6	10	10	4	10	10

Func.

Cappozzo, Human Movement Science, 1984 Bell et al., Journal of Biomechanics, 1990

Davis et al., Human Movement Science, 1991

anatomical reference frame precision

r [deg]		INTRA- OPERATOR	INTER- OPERATOR
PELVIS	A-P	2.3	5.2
	V	2.6	3.7
	M-L	3.7	4.1
FEMUR	A-P	0.9	2.5
	V	4.7	5.1
	M-L	0.9	3.0
TIBIA and	A-P	1.4	4.2
FIBULA	V	3.5	9.4
	M-L	0.3	2.6
FOOT	A-P	2.7	5.9
	V	2.3	9.2
	M-L	1.8	5.1

Della Croce et al., Medical & Biol. Eng. & Comp., 1999

3D Anatomical Human Summer Schop – Cagliari, May 21-23th 2008

joint kinematics precision

r [deg]		INTRA- OPERATOR	INTER- OPERATOR
HIP	Fl/ex	3.9	5.0
	Int/ext	5.3	10.4
	Ab/add	2.5	5.2
KNEE	Fl/ex	1.0	3.7
	Int/ext	5.8	10.4
	Ab/add	1.7	5.2
ANKLE	Fl/ex	1.6	3.3
	Int/ext	3.9	10.3
	Ab/add	3.5	10.9

Della Croce et al., Medical & Biol. Eng. & Comp., 1999

joint kinematics precision

flexion-extension

Della Croce et al., Medical & Biol. Eng. & Comp., 1999

FLEXION-EXTENSION MUSCULAR MOMENT AT THE HIP

Stagni et al., Journal of Biomechanics, 2000

additional anatomical landmarks

Bone-embedded Anatomical Frame (BAF)

additional BAF (2)

additional BAF (3)

additional BAF (4)

additional BAF (5)

additional BAF (7)

results

recent advances

optimization of functional methods for joint modelling

augmented anatomical landmark identification

provided in part by

Department of Human Movement and Sport Sciences University Institute for Movement Science Rome, Italy

hip : spherical joint

functional approach

HJC: M(

hip : spherical joint

best algorithm

more suitable movement

criteria for marker cluster design

Cereatti et al. (2004) Camomilla et al. (2006)

ankle : universal joint

3 angular rotations3 linear displacements

functional approach

axes positions and orientations

recent advances

• optimization of functional methods for joint modelling

• anatomical landmark identification

anatomical calibration: traditional approach

superficial anatomical landmarks are identified by palpation

lateral epicondyle

anatomical calibration: traditional approach

• selected anatomical landmarks

$$^{c}\mathbf{a}_{i'} = \begin{bmatrix} ^{c}a_{xi'} & ^{c}a_{yi'} & ^{c}a_{zi'} \end{bmatrix}, i = i$$

 unlabelled points selected in areas of the bone covered by a thin layer of soft tissues, so that the skin surface may be considered to coincide with the bone surface

$$^{c}u_{i} = \begin{bmatrix} ^{c}u_{xi} & ^{c}u_{yi} & ^{c}u_{zi} \end{bmatrix}$$
, $i = 1, \dots, r$

anatomical calibration: novel approach

 ${}^{g}\mathbf{u}_{i} = \begin{bmatrix} {}^{g}u_{xi} & {}^{g}u_{yi} & {}^{g}u_{zi} \end{bmatrix}, i = 1, \dots, r$

Rozumalski A, Schwartz MH. Gait & Posture 2004

global position of unlabelled points of the bone surface

a wand carrying three non-aligned markers

points on the subject's bone surface

as reconstructed using stereophotogrammetry

bone digital model* (template from database)

the distal portion of the bone is isolated

first approximation registration

Minimization of mean direct Hausdorff distance

Minimization was performed using a genetic algorithm

Michalewicz, Z. (1996). Genetic Algorithm + Data Structures = Evolution Programs. Springer-Verlag: New York
first approximation registration

repeatability assessment

MC LC s

LE

LP

sd [mm]

landmark	LE	ME	LP	MP	LC	MC
Method # 3* Intra-operator	8	7	8	11	3	5
Method # 3* Inter-operator	19	15	15	19	13	14
Method # 4** Intra-operator	1	1	2	2	1	1
Method # 4** Inter-operator	4	5	4	4	4	3

* Della Croce U, Cappozzo A, Kerrigan C. Medical & Biol Engng & Comp 1999

** Donati et al (2007)

MP

ME

repeatability assessment

MC LC sd [mm]

LE

landmark	LE	ME	LP	MP	LC	MC		
Method # 3* Intra-operator	8	7	8	11	3	5		
Method # 2* Expert physiotherapists								
Inter-operator	19	15	15	19	43	14		
Method # 4**		Å	~	~	A			
Intra-operator	1	Bioen	gineers	<u></u>		former and the second se		
Method # 4**		1000.00 0000	<i>M</i>		الألر	d ¹⁵⁵ 1		
inter-operator				í afr	4			

* Della Croce U, Cappozzo A, Kerrigan C. Medical & Biol Engng & Comp 1999

** Donati et al (2007)

MP

ME

LP

anatomical calibration: method # 4

Precise and economic $\mathcal{L}_{LE}^{\bullet}ME$ (no skilled professional required)

Registration data:

unlabelled and labelled points of the bone surface

$$^{c}u_{i} = \begin{bmatrix} ^{c}u_{xi} & ^{c}u_{yi} & ^{c}u_{zi} \end{bmatrix}, i = 1, \dots, r$$

$$^{c}\mathbf{a}_{i'} = \begin{bmatrix} ^{c}a_{xi'} & ^{c}a_{yi'} & ^{c}a_{zi'} \end{bmatrix}, i = i'$$

conclusions

anatomical landmark mislocation can be reduced by:

- increasing the number of anatomical landmarks
- using the least sensitive BAF definition rules
- defining and determining anatomical landmark areas

Thank you