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Outline

(I) Rendering of massive volumetric datasets

(II) Enhanced Direct Volume Rendering using a Light Field Display

(I) Introduction to medical volume visualization
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Introduction to medical volume visualization
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Reconstruction of volumetric datasets

• Application in medicine, geology, archaeology, 
material science, biology, computational science 
and engineering, etc.

• Particularly, in medicine, hospitals 

acquire collections of 2D images

• Volume rendering is the main 

accepted approach for volume 

reconstruction

Source: http://www.physics.utoronto.ca
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Volume rendering for 3D reconstruction

Dataset 3D Rendering Interaction+classification

• OBJECTIVE : Real time interaction and rendering on 
commodity graphics hardware. We would like to 
support segmented data as input
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• Map sample values to an opacity and color.

• This mapping is done using a transfer function

• The resulting RGBA value is projected onto the 
correspondent pixel of the frame buffer. 

• Projection techniques:

– Splatting

– Shear Warp

– Texture Mapping

– Ray-casting

– GPU Ray-casting

Direct Volume Rendering (DVR)
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Ray-casting integration

• Emission absorption model
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• Empty Space Skipping
– Avoid rendering transparent regions

• Early Ray Termination
– When the volume is rendered in front to back order, once sufficient 

dense material has been encountered for a pixel, further samples will 
make no significant contribution so may be ignored

• Volume Segmentation

• Octree and BSP space subdivision
– Use of hierarchical structures for both compression and speed-up

• Multiple and Adaptive Resolution Representation

• Pre-integrated volume rendering
– In order to reduce sampling artifacts by pre-computing much of the 

required data

Optimization techniques for DVR
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(I) Rendering of massive volumetric datasets
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Goal and Motivation

Accurate interactive inspection of very large 

volumes (unlimited size!) on PC platforms.
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Goal : unlimited size!

• Models of unbounded complexity 
on limited computers

– We assume less data on screen 
(N) than in model (K   ∞)

– Need for output-sensitive 
techniques O(N), not O(K)

• Allow interactive exploration of 
multigiga-voxel datasets on a 
desktop PC

complexity order K

complexity order N << K
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Motivation

• Nowadays huge digital models are becoming increasingly 
available for a number of different applications ranging from 
CAD, industrial design to medicine and natural sciences.

• In the field of medicine, data acquisition devices such as MRI 
or CT scanners routinely produce huge volumetric datasets.

• Ray-casters fully executed by GPU fragment programs, have 
demonstrated the ability to deliver real-time frame rates for 
moderate-size data visualization.
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Our main contribution
• We propose a method based on the decomposition of a 

volumetric dataset into small cubical bricks, which are then 
organized into an octree structure maintained out-of-core.
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Related work (1/2) - CPU based methods
• Separate rendering of blocks and frame 

buffer composition

– Multiresolution sampling of octree tile 
blocks according to view-dependent
criteria 

[LaMar et al. 1999]

– Coarse octree built upon uniform sub-
blocks of the volume, and use data 
dependent measures to select block 
resolution 

[Boada et al. 2001]

– Decomposition into wavelet
compressed blocks, use block 
resolution to determine inter-slice 
distance, introduction of methods for 
empty space skipping and early 
ray termination 

[Guthe et al. 2004]

• Slice-based volume rendering 
– Accelerated by skipping empty blocks 

and exploiting an opacity map for 
occlusion culling

[Li et al. 2003]
Source: Li, IEEE Visualization 2003

Source: Guthe, Computer & Graphics 2004

Source: LaMar, IEEE Visualization 1999
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Related work (2/2) - GPU based methods

• [GPU] Separately render blocks using 
volumetric raycasting on the GPU and sort 
cells into layers for front-to-back rendering

– Devise propagation methods to sort 
cells into layers for front-to-back 
rendering

[Hong et al 2005, Kaehler et al 2006]

• Problems:
– These methods create artifacts on the 

boundaries
– Difficult to implement optical models 

with rays changing direction 
(refraction, global illumination, etc.)

• How to fit large volume datasets into GPU 
memory?

– Compressing data using:
• adaptive texturing schemes to fit 

data in a compressed form [Vollrath et 
al. 2006]

– Problem: sampling density

• using flat multiresolution blocking
methods [Ljung et al. 2006]

– Problem: number of blocks is constant 
and the method remains performing 
only if individual blocks are within a 
small range of sizes

Source: Kaehler, Eurographics / IEEE VGTC 
Workshop on Volume Graphics, 2006
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Our contribution
A GPU-friendly output sensitive technique

• We face a real-time data filtering problem!

• Our proposed solution combine:

– A multiresolution and spatial subdivision structure
• Spatial indexing

• Visual approximation

– A view-dependent renderer
• Spatial Index Texture & stackless GPU raycaster

• Visibility & Occlusion culling

– An efficient memory management subsystem
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Multiresolution Out-of-core Volume Rendering

Multiresolution and spatial subdivison structure

• Preprocessing overview:

– Use an octree structure to save the volumetric model

– Decompose the original volume into small cubical bricks

– Empty space skipping  (skipping empty bricks)

– For each non-empty brick save:

• Voxel values

• Range of values (min-max)

• Optional precomputed gradients

– Visual approximation : reconstruct inner nodes by bottom-
up recombination using:

• Median filtering for values

• Sobel 5x5x5 3d filtering for gradients
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Multiresolution Out-of-core Volume Rendering

View dependent renderer

• Real-time rendering overview:
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• Real-time rendering overview:

– Use a CPU runtime loader that updates a view and transfer 
function – dependent working set of bricks

– Asynchronously mantain bricks on both CPU and GPU 
memory fetching data from the out-of-core octree

– Adaptive refinement method guided by priority:

• Sorted by decreasing projected screen-space size of voxels

• Sorted by the decreasing number of pixels visible resulting from
the feedback  of the occlusion queries

– Spatial Index Texture

– Stackless GPU raycaster

– Visibility & Occlusion culling

Multiresolution Out-of-core Volume Rendering

View dependent renderer
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Multiresolution Out-of-core Volume Rendering

View dependent renderer - Spatial Index Texture

• Spatial Index Texture:

– Structure created on-the-fly at each frame which encode 
the minimum amount of data required for octree traversal.

– Use an 8 bit RGBA texture encoding a tag in the alpha value:
– Set A = 0.0 if RGB is a pointer to an empty node

– Set A = 0.5 if RGB is a pointer to an inner node

– Set A = 1.0 if RGB is a pointer to data

– Octree ropes structure for stackless traversal [Havran et al, 1998]
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Multiresolution Out-of-core Volume Rendering

View dependent renderer – Stackless GPU raycaster

• Stackless GPU raycaster:

– Streamlined octree extension of an efficient stackless ray 
traversal method for kd-trees [Popov et al, 2007]

– Computes the volume rendering integral using non-empty 
bricks in front-to-back order and early ray termination.

– Adapt sampling density to brick resolution.
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Multiresolution Out-of-core Volume Rendering

View dependent renderer – Fragment shader (octree traversal)

• Stackless algorithm

– Compute neighbour 
information and 
bounding boxes on 
the fly

• Simple state for a ray

– current node + entry 
point into the brick

• Reduce texture memory 

accesses

– exploiting the 
regular structure of 
an octree

• Front to back rendering

• Adaptive sampling
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Multiresolution Out-of-core Volume Rendering

View dependent renderer – Visibility & Occlusion culling

• Visibility & Occlusion culling:

– Occlusion culling only with early ray termination is not optimal

– We propose a feedback mechanism by marking visible 
bricks in the previous frame and using occlusion queries

– Use screen space subdivision in order to avoid wasting 
time waiting for the occlusion queries response
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Multiresolution Out-of-core Volume Rendering

Overview

• Independent brick processing:
– For each brick:

• Filtering
• Compressing (LZO)

• Out-of-core  + Parallelizable

• Out-of-core  + GPU octree 
traversal / GPU optimized cache.

• View + Occlusion culling

• NPR + Isosurface rendering

• Construction:
– Decompose the original volumetric 

model into small cubical slightly 
overlapped bricks

– Skip empty bricks and for those 
not empty save the range of 
values and optional precomputed 
gradients

– Reconstruct inner nodes by 
bottom-up recombination using:

• Median filtering for values
• Sobel 5x5x5 3d filtering for 

gradients

• Rendering:
– GPU octree traversal and view 

dependent octree reconstruction
– GPU-friendly cache refilling to 

exploit GPU bandwidth
– Occlusion culling using Z-buffer + 

OpenGL occlusion queries
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Multiresolution Out-of-core Volume Rendering

Results

Visible human head data set

Source: The National Library of 
Medicine, USA

Resolution: 256x256x128

Platform: Linux PC
AMD Opteron QuadCore 
4GB RAM memory
SATA2 disks
GeForce 8800 Ultra
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Alias Name: OBELIX 
Modality: CT 16 
File Size: 636 MB 
Description: Whole body contrast CTA acquired on a 16 detector CT scanner. Normal study.

Source: http://pubimage.hcuge.ch
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Scan Date: 01-21-2004

XY resolution: 0.0859375 mm (at full 
resolution)

Slice Thickness: 0.1 mm

Number of Slices: 999

Scan Resolution: 1024x1024

Specimen Source: uncatalogued

Specimen Description: Upper Body 

Scientific Name: Zaedyus pichiy, 
Common Name: Pichi Armadillo
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Scan Date: 07-11-2003

XY resolution: 0.09228515625 mm (at full 
resolution)

Slice Thickness: 0.105 mm

Number of Slices: 1080

Scan Resolution: 1024x1024

Specimen Source: Texas Memorial 
Museum (TNHC 62768)

Specimen Description: Upper Body 

Scientific Name: Chamaeleo calyptratus, 
Common Name: Veiled Chameleon
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Resolution: 2048x1024x1080

16 bits / sample

4.1GB octree node database

12-30 Hz in DVR rendering for a

2048x2048x2048 cubical grid!
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Multiresolution Out-of-core Volume Rendering

Conclusions

• We have proposed an adaptive out-of-core technique for 
rendering massive scalar datasets within a single-pass GPU 
raycasting framework

• We separate the working set mantainance on the CPU, from 
rendering, which is performed fully on GPU by a stackless
raycaster

• Results demonstrate that the resulting method is able to 
interactive explore of multigiga-voxel datasets on a desktop PC
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Multiresolution Out-of-core Volume Rendering

Present and Future work

• Support new light-field displays prototypes

• Support RGB-based datasets and/or multidimensional transfer 
functions

• Parallelization on graphics-clusters: improve load balancing of 
the occlusion and visibility culling tasks
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(II) GPU Accelerated Direct Volume Rendering       

on an Interactive Light Field Display
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Motivation

• Resolving the spatial arrangement of complex 3D structures in images 
produced by DVR techniques is a difficult task

• In particular, in medical data CT’s and MRI’s often contains overlapping 
structures, leading to cluttered images difficult to understand

• Two othogonal research directions:

– Improving rendering quality with advanced photo-realistic and non-
photorealistic techniques

– Improving volumetric understanding by employing displays able to elicit 
more depth cues than the conventional 2D monitor or providing improved 
color reproduction
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Our main contributions

• A  general MCOP 
technique for a class of 
horizontal parallax light 
field display

• A hardware and software 
prototype system with 
interactive performance 
on a single PC 
configuration

• GPU accelerated 
framework implementing 
volume ray-casting
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• Interactive 3D displays. The key 
feature characterizing 3D displays is 
direction-selective light emission

• Volumetric approaches
– light beams projected on 

refractive/reflective media 
positioned or moved in space 
[McKay00, Favalora01, 
Jones07,Cossairt07]

• Pure holographic approaches
– holographic patterns 

reconstructing the light wavefront
originating from the displayed 
object, e.g., using optically 
addressed spatial light modulators 
[Stanley00], or digital micro-
mirror devices [Huebschman03]

• Multi-view approaches
– based on an optical mask or a 

lenticular lens array [Matusik04]
• Our display prototype employs 

multi-view technology combined 
with light shaping capabilities of a 
holographically recorded screen

Source: Matusik, Siggraph 2004

Source: Jones, Siggraph 2007

Source: Favalora, 2007-2008
Related work (1/3)
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Related work (2/3)

• Projecting graphics to the 3D 
display 
– Multiple-center-of-projection 

techniques to produce images 
exhibiting correct stereo and motion 
parallax cues [Jones07,Halle98]

– Standard orthographic or perspective
projections simplify rendering but
produce perspective distortions
[Raskar98,Cossairt07]

– Framework for studying sampling 
and aliasing for 3D displays 
[Zwicker06]

Source: Cossairt, 2007

Source: Zwicker06
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Related work (3/3)

• GPU accelerated volume 
visualization on multi-view 
displays
– survey of GPU accelerated

volume rendering methods
[Engel06]

– single-pass GPU ray-casting
[Stegmaier05]

– acceleration methods for 
stereo volume rendering

[Wan04]

• We exploit GPU vertex 
shaders to render proxy 
geometry that activates a 
fragment shader performing 
the actual ray-casting

Source: Stegmaier05
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Display concept (1/2)

• specially arranged 
projector array and 
a holographic screen

• each projector emits 
light beams toward 
a subset of the 
points of the 
holographic screen 

• side mirrors increase 
the available light 
beams count
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Display concept (2/2)

• The holographic screen 
enables selective directional 
transmission of light beams
– Horizontally, sharply 

transmissive

– Vertically, the screen scatters 
widely

• Angular light distribution 
characterized by a wide 
plateau and steep Gaussian 
slopes
– homogeneous light 

distribution and continuous 
3D view with no visible 
crosstalk

Projector

Screen

Light field



C
R
S
4
 V
is
u
a
l 
C
o
m
p
u
ti
n
g
 G
ro
u
p

(w
w
w
.c
rs

4
.i
t/
vi
c/

)

Interactive visualization of medical datasets

José A. Iglesias Guitián, 3D Anatomical Human Summer School 2008, Pula (Italy)

Light field geometry

• Control light beams as if emitted from physical
objects

• Rendered scene reconstruction

– Precompute projection parameters

– Generate multiple views for the same image

• Geometric calibration as a two-step approach

– Projectors position and frustum found through 
parametric optimization

– Error correction with post-rendering 2D image warp
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Projecting graphics

• The renderer assumes a 
virtual viewer              in 
order to fix the vertical 
viewing angle

• Screen position S for a virtual 
point P as projected by 
emitter E

• Normalized projected 
coordinates with respect to 
image rectangle R

• Depth dependent spatial 
resolution
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GPU-based volume ray casting (1/2)

• Two-pass approach typical of multi-projectors display

– Off-screen rendering to a frame-buffer-object

– Geometry and color correction through 2D warping

• Modified GPU ray-casting

– MCOP cannot be recast into the traditional homogeneous 
matrix

– Proxy is a coarsely tessellated version (8x8 quads) of a slightly 
enlarged bounding volume
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GPU-based volume ray casting (2/2)

• For each fragment 

– Screen pixel position S and ray direction d are 
computed using the MCOP projection and 
transformed in local texture coordinates

– ray entry point and integration lengths are computed 
by clipping the line S,d against the unit box

– Fragments with null length are discarded, otherwise 
renderer performs classic volume sampling and 
composition

• Mip-mapping takes into account depth dependent 
spatial resolution
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Prototype system setup

• Display system built by 
Holografika
– 7.4M beams/frame 

– 96 fast 320x240 LCD 
displays 

– FPGA input processing units 
decoding DVI stream 

– 2D pixel size 1.25 mm,  
angular accuracy 0.8◦

• Athlon64 3300+ PC with a 
NVIDIA 8800GTX graphics 
board

• C++, OpenGL, Cg shaders
implementing volume ray 
casting with different 
composition techniques
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Evaluation

• Enhanced 3D 
understanding
– stereopsis and parallax 

effects through ego-
motion

– 2IFC perceptual 
experiment enforced this 
hypothesis

• Users rapidly recover all 
depth cues to 
instantaneously 
recognize complex 
structures
– Very useful for analysis of 

angiography datasets
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Interactive sequences
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Limitations

• Rendering performance 
during interaction

– frame rate improved by 
reducing the pixel count 
and doubling the 
integration step size

– misalignment between tiles 
visible when objects are 
moved with a too slow 
refresh rate

• Distortion artifacts

– occur when users move 
away from the expected 
optimal viewing position
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Conclusions

• Today we have introduced volume rendering techniques, 
possible optimizations and acceleration using GPU ray-
casting.

• We have reviewed one state-of-the art approach of how we 
can visualize massive volume datasets on a commodity PC 
platform

• Furthermore, we have seen how we can enhance 3D visual 
understanding and interaction using a new generation of light 
field displays
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